PersCom — Компьютерная Энциклопедия Компьютерная Энциклопедия

Видеоадаптеры

Видеоадаптеры

Адаптеры SVGA

С появлением видеоадаптеров XGA и 8514/A конкуренты IBM решили не копировать эти расширения VGA, а начать выпуск более дешевых адаптеров с разрешением, превышающим разрешение продуктов IBM. Эти видеоадаптеры образовали категорию Super VGA, или SVGA. Поначалу SVGA не был стандартом. Под этим термином подразумевались многочисленные и отличающиеся одна от другой разработки различных компаний, требования к параметрам которых были жестче, чем к VGA.

Например, одни видеоадаптеры предлагали несколько форматов изображения (800×600 и 1024×768) с разрешением, которое выше, чем у VGA, в то время как другие имели такое же или даже большее разрешение (но и более обширную палитру воспроизводимых оттенков в каждом формате). Несмотря на различия, все эти видеоадаптеры относятся к категории плат SVGA. Внешне платы SVGA мало чем отличаются от своих собратьев VGA. На них установлены такие же разъемы, однако, поскольку типовые спецификации плат SVGA разных производителей существенно различаются, подробно рассмотреть их невозможно.

Стандарты SVGA ассоциации VESA

В октябре 1989 года ассоциация VESA, учитывая сложность программирования множества выпускаемых модификаций карт SVGA, предложила стандарт единого программного интерфейса с этими платами. В эту ассоциацию вошли представители большинства компаний, выпускающих аппаратуру для ПК, в том числе и аппаратуру отображения. Новый стандарт был назван VESA BIOS Extension. Если видеоадаптер удовлетворяет этому стандарту, программным путем легко определить специфические соответствия и использовать их в дальнейшем. Достоинство VESA BIOS заключается в том, что для работы с любым адаптером SVGA программист может использовать единый драйвер. Существующий стандарт VESA на платы SVGA предусматривает использование практически всех распространенных вариантов форматов изображения и кодирования цветовых оттенков, вплоть до разрешения 1280×1024 пикселей при 16777216 оттенках (24-разрядное кодирование цвета). С адаптерами SVGA различных моделей от разных производителей можно общаться через единый программный интерфейс VESA. Эта поддержка главным образом необходима для DOS-приложений реального режима (в основном — для игр) и операционных систем, отличных от Windows. Для пользователей операционных систем Windows 9x и Windows NT/2000 эти расширения BIOS не нужны, поскольку для работы используется видеодрайвер установленного видеоадаптера.


Примечание!

Список режимов VESA BIOS по разрешению, глубине цветности и частоте обновления экрана можно найти в техническом справочнике, содержащемся на прилагаемом к книге DVD.



Видеопамять

Большинство видеоадаптеров для хранения изображений при их обработке обходятся собственной видеопамятью; хотя некоторые видеокарты AGP используют системную оперативную память для хранения трехмерных текстур, эта функция редко находит применение. В основном современные графические адаптеры оснащены собственной видеопамятью объемом от 256 Мбайт и подключены к системе через порт AGP или интерфейс PCI Express x16. Во многих малобюджетных системах встроенные графические системы используют оперативную память компьютера посредством унифицированной архитектуры UMA. В любом случае с помощью как собственной, так и заимствованной видеопамяти выполняются одни и те же операции.

От объема видеопамяти зависят максимальная разрешающая способность экрана и глубина цвета, поддерживаемая адаптером. На рынке в настоящее время предлагаются модели с различными объемами видеопамяти: 128, 256 или 512 Мбайт. Хотя больший объем видеопамяти не сказывается на скорости обработки графических данных, при использовании расширенной шины данных (64–128 бит) или системной оперативной памяти для кэширования часто отображаемых объектов скорость видеоадаптера может существенно увеличиться. Кроме того, объем видеопамяти позволяет видеоадаптеру отображать больше цветов и поддерживать более высокое разрешение, а также хранить и обрабатывать трехмерные текстуры в видеопамяти адаптера AGP, а не в ОЗУ системы.

В качестве видеопамяти могут использоваться микросхемы различных типов.

Устаревшие типы видеопамяти VRAM, WRAM и MDRAM были вытеснены высокоскоростной памятью SGRAM, SDRAM, DDR SDRAM, DDR2 SDRAM и GDDR3 SDRAM — популярными стандартами системной оперативной памяти. Высокое быстродействие и относительно низкая цена производства привели к тому, что видеоадаптеры с объемом видеопамяти менее 64 Мбайт уже давно исчезли с прилавков магазинов.

Память SDRAM

В компьютерах с процессорами Pentium III, Pentium 4, Athlon и Duron в качестве основной используется синхронная динамическая память SDRAM (Synchronous DRAM). Микросхемы SDRAM обычно припаяны; в некоторых ранних моделях они вставлялись в соответствующие разъемы. Этот тип памяти может работать на частоте шины до 200 МГц, но по быстродействию несколько уступает SGRAM. Память SDRAM используется в недорогих видеоадаптерах NVIDIA GeForce2 MX и ATI RADEON VE.

Память SGRAM

Память SGRAM (Synchronous Graphics RAM) предназначалась для высококачественных моделей видеоадаптеров. Как и SDRAM, она может работать на частоте шины (до 200 МГц). Однако в SGRAM добавлена дополнительная схема для блочной записи данных, что увеличивает скорость прорисовки изображения или трехмерных операций с Z-буфером. Хотя SGRAM более производительная, чем SDRAM, она вытеснена более популярной и быстрой памятью стандарта DDR SDRAM.

Память DDR SDRAM

Память Double Data Rate SDRAM (также называемая DDR SDRAM) — наиболее распространенный тип памяти, которым оснащаются видеоадаптеры. Она позволяет передавать данные со скоростью, в два раза превышающей быстродействие традиционной памяти SDRAM, так как данные передаются по переднему и заднему фронтам импульса. В настоящее время памятью DDR SDRAM оснащены адаптеры семейства GeForce FX от компании NVIDIA, а также адаптеры семейств Radeon 9xxx и X300–X600 от компании ATI.

Память DDR2 SDRAM

Память второго поколения DDR2 SDRAM за каждый такт выполняет выборку 4 бит данных, чем и отличается от DDR SDRAM, для которой характерна выборка 2 бит данных за такт.

GDDR3 SDRAM

Память стандарта GDDR3 SDRAM начала использоваться в дорогих адаптерах NVIDIA GeForce 8 и GeForce 7 и сериях HD и X1xx от ATI, основана на памяти DDR2, однако имеет два существенных отличия.

  • GDDR3 разделяет циклы чтения и записи, используя несимметричный однонаправленный импульс, в то время как стандарт DDR2 предполагает использование дифференциальных двунаправленных импульсов. Благодаря этому значительно увеличивается скорость передачи данных.
  • GDDR3 использует механизм псевдооткрытого дрена, при котором вместо напряжения используется ток. Благодаря этому обеспечивается совместимость с GDDR-3 графических процессоров, предназначенных для использования с памятью DDR или DDR-II. В результате множество современных видеокарт оборудованы памятью DDR2 или GDDR3. Для определения типа памяти, используемой в конкретной плате, ознакомьтесь со спецификациями поставщика.

GDDR4 SDRAM

Память GDDR4 SDRAM была представлена в видеокарте ATI X1950 XTX, после чего использовалась в адаптерах RADEON HD2600 и 2900. По сравнению с GDDR3 она обладает следующими преимуществами:

  • большая пропускная способность (для обеспечения того же быстродействия, что и GDDR3, ей необходимо вдвое меньшая частота);
  • большая плотность памяти, что позволяет достигать большего объема в одной микросхеме.



Визуализация, ускорение, оптимизация

Однопроходная или мультипроходная визуализация

В различных видеоадаптерах применяются разные технологии визуализации. В настоящее время практически во всех видеоадаптерах фильтрация и основная визуализация выполняются за один проход, что позволяет увеличить частоту кадров. Видеоадаптеры с функцией однопроходной визуализации и фильтрации обычно являются более быстродействующими при работе с трехмерными программами и позволяют избежать искажений, вызванных ошибками в множественных вычислениях значений с плавающей запятой во время визуализации. Однопроходная визуализация стандартизирована в DirectX 9 и 10.

Аппаратное или программное ускорение

При аппаратной визуализации достигается гораздо лучшие качество изображения и скорость анимации, чем при программной. Используя специальные драйверы, новые видеоадаптеры выполняют все нужные вычисления с неслыханной ранее скоростью. Для работы с приложениями трехмерной графики, а также для современных игр это технологическое решение просто неоценимо. Обратите внимание, что графические системы обеспечивают низкий уровень производительности, поскольку основная нагрузка по трехмерной визуализации возлагается на центральный процессор, а не на графический процессор видеоадаптера.

Чтобы обеспечить такую производительность, большинство видеоадаптеров работают на высоких частотах (иногда превышающих рабочую частоту микросхемы RAMDAC), т.е. разогнаны, а следовательно, выделяют большое количество тепла. В большинстве современных высококачественных видеоадаптеров для охлаждения модулей видеопамяти используются теплоотвод и вентилятор, что упрощает разгон видеокарты.

Программная оптимизация

Следует подчеркнуть, что расширенные функции трехмерной визуализации видеоадаптера совершенно бесполезны до тех пор, пока разработчики игр и программных приложений не оптимизируют свои продукты для использования всех преимуществ таких функций. Несмотря на наличие двух конкурирующих стандартов трехмерной графики (OpenGL и DirectX), производители видеоадаптеров создают драйверы, позволяющие пользователям наслаждаться игрой, оптимизированной под любой из стандартов. Поскольку некоторые видеоадаптеры лучше подходят для определенных игр, перед покупкой очередной игры стоит ознакомиться с ее обзорами в популярных журналах и на сайтах, посвященных компьютерным играм и видеоадаптерам. Обычно выход новой версии DirectX или OpenGL и их реализацию в программах разделяет несколько месяцев.

Для ряда видеоадаптеров можно увеличить быстродействие, настроив параметры оптимизации OpenGL, Direct 3D, RAMDAC, тактовые частоты и другие параметры. Следует заметить, что упрощенные драйверы видеокарт, содержащиеся в операционных системах Windows, не имеют диалоговых окон настройки этих параметров, так что лучше установить драйверы, входящие в комплект поставки видеокарты или загруженные с сайта производителя графического процессора или адаптера. (Иногда лучше устанавливать драйвер производителя адаптера, так как он может обеспечивать более полную поддержку всех функций, реализованных в видеокарте.).


Примечание!

Если вы хотите без промедления погрузиться в океан компьютерных игр, приобретите так называемую ‘‘коробочную’’ версию видеоадаптера у розничного продавца. Такие адаптеры поставляются в комплекте с некоторыми играми (нормальными или демонстрационными версиями), которые созданы или скомпилированы для того, чтобы можно было воспользоваться всеми преимуществами видеопроцессора. ДешевыеO EM-версии видеоадаптеров (‘‘белой сборки’’) зачастую продаются в обычных полиэтиленовых пакетах, только с драйверами и без дополнительного программного обеспечения, а их быстродействие может существенно отличаться от соответствующей ‘‘коробочной’’ версии модели. В некоторых OEM-адаптерах используются некачественные драйверы, занижены частоты видеопамяти и RAMDAC, не хватает TVвыхода и других функций. Некоторые производители видеоадаптеров используют для OEM-моделей отдельные названия, что, однако, бывает далеко не всегда. Кроме того, видеоадаптеры могут продаваться в одной большой упаковке и предназначаться для масштабной модернизации систем компании силами ее персонала. К таким видеоадаптерам часто не прилагаются документация и компакт-диск с драйверами, не хватает расширенных программных функций, которые имеются в ‘‘коробочных’’ версиях.

Устройства формирования видеосигнала

Первые попытки обработать изображение были предприняты на телевидении. Но телевизионные сигналы существенно отличаются от сигналов в компьютерах. В США стандарты для цветного телевидения были введены в действие в 1953 году Национальным комитетом по телевизионным системам (National Television System Committee — NTSC). Некоторые страны, например Япония, поддерживают этот стандарт, а в Европе были разработаны собственные стандарты: PAL (Phase Alternate Line) и SECAM (SEquential Couleur Avec Memoire). Различия между телевизионными стандартами приведены в таблице.

С помощью адаптеров VGA/NTSC можно просматривать созданные компьютером изображения на обычном телевизоре и записывать их на видеомагнитофон. Подобные устройства делятся на две категории: с полной “привязкой” (для взаимной синхронизации многих источников видеосигналов или телевизионных устройств и компьютера) и без таковой. Первые обеспечивают высокую стабильность сигналов; они необходимы, например, для качественной записи на ленту, однако при обычной демонстрации можно обойтись более простыми конвертерами.

Конвертеры выпускаются либо как встраиваемые платы, либо как отдельные устройства (для портативного компьютера). Такие внешние устройства не заменяют адаптер VGA, а подключаются к нему извне с помощью кабеля. Во встраиваемых конвертерах, помимо входного и выходного портов VGA, устанавливаются стандартные видеоразъемы. На задней панели многих видеоадаптеров высшей и средней ценовой категорий от компаний NVIDIA и ATI расположены TV-выходы. Как правило, конвертеры поддерживают телевизионные стандарты NTSC и PAL. Разрешение, отображаемое на экране телевизора и фиксируемое видеомагнитофоном, обычно не превышает 640×480 пикселей; однако TV-выходы новейших видеоадаптеров позволяют получать разрешающую способность экрана 800×600. На платах могут устанавливаться схемы, позволяющие избавиться от мерцания картинки, которое возникает из-за различия в частотах кадровой синхронизации в телевизионном и VGA-стандарте.

Для подключения ПК к монитору HDTV используйте кабель HDMI, если в системе предусмотрен такой порт. В противном случае можно воспользоваться адаптером DVI-D-HDMI или DVI-I-компонентным. Если для просмотра телевидения высокой четкости требуется поддержка HDCP, и монитор, и адаптер должны поддерживать эту спецификацию; в противном случае просмотр программ будет либо вообще невозможен, либо возможен, но с пониженным разрешением.

Типы видеоадаптеров

Для любого монитора необходим источник сигнала. Сигналы поступают в монитор от видеоадаптера, установленного в компьютере.

Существует три способа подключения к системному блоку ЭЛТ- или жидкокристаллических мониторов.

  • Платы расширения. В данном случае предполагается использование отдельных плат расширения с интерфейсом PCI-Express, AGP или PCI. При этом обеспечивается наивысшее быстродействие, большой объем памяти, а также поддержка наибольшего количества функций.
  • Графический процессор, интегрированный на системной плате. Быстродействие чаще всего оказывается ниже, чем при использовании плат расширения, преимущественно по причине использования устаревших решений. Хотя подобные решения часто поддерживались системными платами LPX, в современных системах они практически не используются. Даже ноутбуки средней и высшей ценовых категорий оснащены дискретными графическими адаптерами.
  • Набор микросхем с интегрированным графическим ядром. Это наиболее доступные по цене решения, однако их быстродействие очень низко, особенно при запуске трехмерных игр и других приложений, интенсивно использующих графику. При этом также обеспечиваются меньшие значения разрешения и частот обновления, чем при использовании плат расширения. Наиболее часто интегрированные наборы микросхем реализованы в бюджетных моделях ноутбуков, а также в некоторых их моделях среднего ценового диапазона.

Как правило, настольные компьютеры, в которых используются системные платы формфактора microATX, FlexATX, microBTX, PicoBTX или Mini-ITX, оснащены графическим ядром, интегрированным в набор микросхем производства компаний Intel, VIA Technology, SiS и др. Некоторые системные платы формфактора microATX также могут допускать установку видеоадаптеров PCI-Express x16 или AGP.

Термин “видеоадаптер” применим как к интегрированным, так и к обособленным решениям. Термин “графический адаптер” полностью взаимозаменяем с термином “видеоадаптер”, поскольку все видеокарты, начиная с разработанного компанией IBM монохромного адаптера MDA, поддерживают отображение как графики, так и текста.



Подкатегории