Большинство ранних версий наборов микросхем Intel (и практически все наборы микросхем других производителей) созданы на основе многоуровневой архитектуры и содержат следующие компоненты: северный мост, южный мост и микросхему Super I/O.
Расположение всех микросхем и компонентов типичной системной платы AMD Socket A, использующей архитектуру “северный/южный мост”, показано на рис. 4.30. Северный мост иногда называют контроллером PAC (PCI/AGP Controller). В сущности, он является основным компонентом системной платы и единственной, за исключением процессора, схемой, работающей на полной частоте системной платы (шины процессора). В современных наборах микросхем используется однокристальная микросхема северного моста; в более ранних версиях содержалось до трех отдельных микросхем, составляющих полную схему северного моста.
Южный мост обладает более низким быстродействием и всегда находится на отдельной микросхеме. Одна и та же микросхема южного моста может использоваться в различных наборах микросхем системной логики. (Разные типы схем северного моста, как правило, разрабатываются с учетом того, чтобы можно было использовать один и тот же компонент южного моста.) Благодаря модульной конструкции набора микросхем системной логики стало возможным снизить стоимость и расширить поле деятельности для изготовителей системных плат. Южный мост подключается к шине PCI (33 МГц) и содержит интерфейс шины ISA (8 МГц). Кроме того, обычно он содержит две схемы, реализующие интерфейс контроллера жесткого диска IDE и интерфейс USB (Universal Serial Bus — универсальная последовательная шина), а также схемы, реализующие функции памяти CMOS и часов. В старых конструкциях южный мост содержал также все компоненты, необходимые для шины ISA, включая контроллер прямого доступа к памяти и контроллер прерываний.
Микросхема Super I/O, которая является третьим компонентом системной платы, соединена с шиной ISA (8 МГц) и содержит все стандартные периферийные устройства, встроенные в системную плату. Например, большинство микросхем Super I/O поддерживают параллельный порт, два последовательных порта, контроллер гибких дисков, интерфейс “клавиатура/мышь”. К числу дополнительных компонентов могут быть отнесены CMOS RAM/Clock, контроллеры IDE, а также интерфейс игрового порта. Системы, содержащие порты IEEE-1394 и SCSI, используют для портов этого типа отдельные микросхемы.
В новых системных платах с микросхемами северного и южного мостов представлена микросхема Super-South Bridge, которая включает в себя функциональные возможности сразу двух микросхем — собственно южного моста и Super I/O.
Новые наборы микросхем системной логики от Intel используют архитектуру концентратора (hub-архитектуру), в которой бывший северный мост называется концентратором контроллера памяти (Memory Controller Hub — MCH), а южный — концентратором контроллера ввода-вывода (I/O Controller Hub — ICH). Системы с интегрированной графикой вместо стандартного MCH используют концентратор контроллера графической памяти (Graphics Memory Controller Hub — GMCH).
Вместо соединения этих контроллеров через шину PCI, как в стандартной архитектуре “северный/южный мост”, взаимодействие между ними осуществляется через выделенный интерфейс концентратора, быстродействие которого вдвое выше, чем быстродействие PCI. Hub-архитектура обладает определенными преимуществами по сравнению с традиционной архитектурой “северный/южный мост”.
Конструкция hub-интерфейса предусматривает увеличение пропускной способности устройств PCI, что связано с отсутствием южного моста, передающего поток данных от микросхемы Super I/O и загружающего тем самым шину PCI. Таким образом, hub-архитектура позволяет увеличить пропускную способность устройств, непосредственно соединенных с южным мостом, к которым относятся новые быстродействующие интерфейсы ATA-100/133, Serial ATA 3 Гбит/с и USB 2.0.
Существует два основных варианта интерфейса концентратора.
Конструкция hub-интерфейса, ширина которого равна 4 или 8 бит, довольно экономична. Ширина интерфейса может показаться недостаточной, но такая конструкция полностью себя оправдывает. Меньшее число выводов говорит об упрощенной схеме маршрутизации платы, снижении количества помех и повышении устойчивости сигнала. Это также сокращает число выводов используемых микросхем, уменьшает их размеры и себестоимость. Таким образом, посредством очень узкой, но быстродействующей архитектуры интерфейс концентратора достигает высших показателей быстродействия, чем те, на которые была способна старая архитектура “северный/южный мост”.
Кроме того, в ICH содержится новая шина Low-Pin-Count (LPC), представляющая собой 4-разрядную версию шины PCI, которая была разработана, в первую очередь, для поддержки микросхем системной платы ROM BIOS и Super I/O. Вместе с четырьмя сигналами функций данных, адресов и команд для функционирования шины требуется девять дополнительных сигналов, что составляет в общей сложности 13 сигналов. Это позволяет значительно уменьшить количество линий, соединяющих ROM BIOS с микросхемами Super I/O. Для сравнения: в ранних версиях наборов микросхем в качестве интерфейса между северным и южным мостами использовалась шина ISA, количество сигналов которой равно 98. Максимальная пропускная способность шины LPC достигает 16,67 Мбайт/с, что примерно соответствует параметрам ISA и чего более чем достаточно для поддержки таких устройств, как ROM BIOS и микросхемы Super I/O.
Intel — не единственная компания, которая стремится заменить медленное соединение по шине PCI между микросхемами северного и южного мостов более производительной альтернативой, не основанной на шине PCI. Ниже описываются подобные архитектуры, созданные несколькими компаниями.
Технические характеристики наборов микросхем от разных производителей представлены в таблице ниже.
Первый набор микросхем системной логики 82350 предназначался для процессоров 386DX и 486. Но он успеха не имел, так как шина EISA не получила широкого распространения, к тому же многие производители выпускали наборы микросхем для этих процессоров. Однако ситуация на рынке постоянно изменялась, Intel отказалась от поддержки шины EISA, и последующие наборы микросхем системной логики для процессора 486 были намного удачливее.
В таблице ниже перечислены наборы микросхем системной логики для процессора Intel 486.
В наборе микросхем 420 впервые была представлена архитектура “северный/южный мост”, которая продолжает использоваться в некоторых моделях и по сей день.
Одновременно с процессором Pentium в марте 1993 года Intel представила свой первый набор микросхем системной логики 430LX (под кодовым названием Mercury) для Pentium. Именно в этот год Intel серьезно занялась проектированием наборов микросхем системной логики и приложила все усилия, чтобы стать лидером на рынке. И поскольку у других производителей на проектирование наборов микросхем системной логики уходило несколько месяцев, а то и год, Intel очень скоро добилась своей цели. В табл. 4.14 перечислены наборы микросхем системной логики Intel для системных плат Pentium. Обратите внимание, что один из них не поддерживает порты AGP — эта поддержка была добавлена только в наборы микросхем, предназначенные для процессоров семейства Pentium II/Celeron.
В таблице ниже перечислены все микросхемы южного моста, составляющие вторую часть наборов микросхем системной логики пятого поколения процессоров на системных платах Intel.
Наборы микросхем для процессоров Pentium, перечисленные в таблицах, не выпускаются уже на протяжении нескольких лет. Основная часть компьютеров, в которых они использовались, уже давно находится на “свалке истории”.
Толчком к созданию наборов микросхем системной логики класса, отличного от Pentium, послужила разработка компанией AMD собственных аналогов Pentium — процессоров семейств K5 и K6. Процессор K5 не достиг больших успехов; в отличие от него процессоры семейства K6 заняли доминирующее положение на рынке недорогих систем, а также стали использоваться для модернизации систем Pentium. Компания AMD чаще использует компоненты сторонних производителей, чем собственные наборы микросхем. Но возможность своевременной поставки соответствующих наборов микросхем, позволяющих поддерживать продукты AMD, сделала процессор K6 и его наследников наиболее вероятными конкурентами процессоров семейств Intel Pentium MMX и Pentium II/III/Celeron. Эта же возможность подтолкнула других поставщиков, таких как VIA, Acer Laboratories и SiS, к поддержке процессоров AMD. К наиболее распространенным наборам микросхем для процессоров класса Pentium относятся следующие: