PersCom — Компьютерная Энциклопедия Компьютерная Энциклопедия

Накопители на жёстких дисках

Накопители на жестких дисках

Шпиндельный двигатель

с осью вращения дисков, никакие приводные ремни или шестерни для этого не используются. Двигатель должен быть бесшумным: любые вибрации передаются дискам и могут привести к ошибкам при считывании и записи.

Частота вращения двигателя должна быть строго определенной. Обычно она колеблется от 3600 до 15000 об/мин или больше, а для ее стабилизации используется схема управления с обратной связью (автоподстройкой), позволяющая добиться необходимой точности. Таким образом, контроль за частотой вращения двигателя осуществляется автоматически, и никакие устройства, позволяющие сделать это вручную, в накопителях не предусмотрены. В описаниях некоторых диагностических программ говорится, что с их помощью можно измерить частоту вращения дисков. На самом деле единственное, на что они способны, — это оценить ее возможное значение по временным интервалам между моментами появления под головками заголовков секторов.

Измерить частоту вращения с помощью программы в принципе невозможно, для этого нужны специальные приборы (тестеры). Не волнуйтесь, если какая-нибудь диагностическая программа сообщит, что частота вращения дисков установлена неправильно; скорее всего, плохо работает сама программа, а не накопитель. Информация о частоте вращения дисков просто не передается (и не должна передаваться) через интерфейс контроллера жесткого диска. Раньше ее можно было оценить, считывая подряд достаточно большое количество секторов и измеряя временные интервалы, через которые появляется соответствующая информация. Но это имело смысл только тогда, когда все диски разбивались на одинаковое число секторов, а номинальная частота их вращения составляла 3600 об/мин. Использование зонной записи, появление накопителей с различными номинальными частотами вращения, не говоря уже о встроенных буферах и кэш-памяти, приводит к тому, что программно вычислить истинную частоту вращения дисков невозможно.

В большинстве накопителей шпиндельный двигатель располагается в нижней части, под блоком HDA. Однако во многих современных устройствах он встраивается внутрь блока HDA и представляет собой центральную часть блока дисков-носителей. Такая конструкция позволяет, не изменяя размера накопителя по вертикали, увеличить количество дисков в блоке (в “стопке”).


Примечание!

Шпиндельный двигатель, особенно в накопителях большого формата, потребляет от 12-вольтного источника питания довольно значительную мощность. Она возрастает еще в 2-3 раза по сравнению со стационарным значением при разгоне (раскручивании) дисков. Длится такая перегрузка несколько секунд после включения компьютера. Если в компьютере установлено несколько накопителей, то, чтобы не подвергать чрезмерной нагрузке блок питания, можно попытаться организовать их поочередное включение. Задержанный запуск шпиндельного двигателя предусмотрен в большинстве накопителей SCSI и ATA.



S.M.A.R.T.

Технология самотестирования, анализа и отчетности (S.M.A.R.T.) — это новый промышленный стандарт, в котором описаны методы, позволяющие предсказать появление ошибок жесткого диска. При активизации системы S.M.A.R.T. жесткий диск начинает отслеживать определенные параметры, чувствительные к неисправностям накопителя или указывающие на них. На основе отслеживаемых параметров можно предсказать сбои в работе накопителя. Если расчетная вероятность появления ошибки возрастает, S.M.A.R.T. генерирует для BIOS или драйвера операционной системы отчет о возникшей неполадке, который указывает пользователю на необходимость немедленного резервного копирования данных до того момента, когда в накопителе произойдет реальный сбой.

На основе отслеживаемых параметров S.M.A.R.T. пытается определить тип ошибки. По данным компании Seagate, 60% ошибок механические. Именно этот тип ошибок и предсказывается S.M.A.R.T. Разумеется, не все ошибки можно предсказать, например появление статического электричества, внезапную встряску или удар, термальные перегрузки и т.д.

Технология S.M.A.R.T. была разработана IBM в 1992 году. В том же году IBM выпустила жесткий диск формата 3,5 дюйма с модулем Predictive Failure Analysis (PFA), который измерял некоторые параметры накопителя и в случае их критического изменения генерировал предупреждающее сообщение. IBM передала на рассмотрение организации ANSI спецификацию технологии предсказания ошибок накопителя, и в результате появился стандарт ANSI — протокол S.M.A.R.T. для устройств SCSI (документ X3T10/94190).

Интерес к развитию этой технологии привел к созданию в 1995 году рабочей группы с участием IBM, Seagate Technology, Conner Peripherals (в настоящее время является подразделением Seagate), Fujitsu, Hewlett-Packard, Maxtor, Quantum и Western Digital. Результатом их работы стала спецификация S.M.A.R.T. для накопителей на жестких дисках с интерфейсами ATA и SCSI, и они сразу же появились на рынке.

В накопителях на жестких дисках с интерфейсами IDE/ATA и SCSI реализация S.M.A.R.T. подобна, за исключением отчетной информации. В накопителях с интерфейсом IDE/ATA драйвер программного обеспечения интерпретирует предупреждающий сигнал на копителя, генерируемый командой S.M.A.R.T. report status. Драйвер запрашивает у накопителя статус этой команды. Если ее статус интерпретируется как приближающийся крах жесткого диска, то операционной системе отсылается предупреждающее сообщение, а та, в свою очередь, информирует об ошибке пользователя. Такая схема в будущем может дополняться новыми свойствами. Операционная система может интерпретировать атрибуты, которые передаются с помощью расширенной команды report status. Что касается накопителей с интерфейсом SCSI, то в этом случае S.M.A.R.T. информирует пользователя только о двух состояниях накопителя — о нормальной работе и об ошибке.

Замечу, что традиционные программы диагностики диска, например Scandisk, работают с секторами данных на поверхности диска и не отслеживают всех функций накопителя в целом. В некоторых современных накопителях на жестких дисках резервируются секторы, которые в будущем используются вместо дефектных. Как только “вступает в дело” один из резервных секторов, S.M.A.R.T. информирует об этом пользователя, в то время как программы диагностики диска не сообщают о каких-либо проблемах.

Каждый производитель накопителей на жестких дисках по-своему реализует параметры монитора S.M.A.R.T., причем большинство из них реализовали собственный набор параметров. В некоторых накопителях отслеживается высота “полета” головок над поверхностью диска. Если эта величина уменьшается до некоторого критического значения, то накопитель генерирует ошибку. В других накопителях выполняется мониторинг кодов коррекции ошибок, который показывает количество ошибок чтения и записи на диск. В большинстве дисков реализована регистрация следующих параметров:

  • высота “полета” головки над диском;
  • скорость передачи данных;
  • количество переназначенных секторов;
  • время раскручивания жесткого диска;
  • частота сбоев при поиске;
  • производительность при поиске;
  • количество повторений раскручивания жесткого диска;
  • количество повторных калибровок накопителя.

Каждый параметр имеет пороговое значение, которое используется для определения того, появилась ли ошибка. Это значение устанавливается производителем накопителя и не может быть изменено.

Существует ряд простых требований, выполнение которых обеспечит корректное функционирование S.M.A.R.T.; для этого необходимы S.M.A.R.T.-совместимый накопитель на жестких дисках и система BIOS, поддерживающая данную технологию, или драйвер жесткого диска для используемой операционной системы. Если BIOS не поддерживает технологию S.M.A.R.T., воспользуйтесь служебными программами (утилитами), которые обеспечат нужную поддержку. К программам такого рода относятся Norton Utilities от Symantec, EZ Drive от StorageSoft и Data Advisor от Ontrack.

Существенное изменение контролируемых параметров инициирует предупреждения S.M.A.R.T., накопитель передает предупреждение с помощью соответствующей команды IDE/ATA или SCSI (в зависимости от типа имеющегося дисковода) драйверу жесткого диска, который находится в системной BIOS. Драйвер выводит это сообщение во время следующей загрузки и выполнения теста POST.

Если необходимы более полные и оперативные сведения, воспользуйтесь специальной утилитой, получающей данные S.M.A.R.T. от накопителя, например SMART Explorer от компании Adenix (www.adenix.net) или HDD Health от Panterasoft (www.panterasoft.com).

При получении предупреждающего сообщения, прежде всего, необходимо обратить внимание на его содержание и создать резервную копию всех данных, хранящихся на жестком диске. Для создания резервных копий используйте только новые носители. Не стоит записывать копируемые данные поверх ранее созданных качественных копий, так как сбой в работе может произойти до того, как будет завершен процесс резервирования.

Что делать после того, как будет создана резервная копия данных? Предупреждение S.M.A.R.T. может быть вызвано внешними причинами, и оно далеко не всегда указывает на возможные сбои в работе накопителя. Например, иногда предупреждающий сигнал инициируется при изменении климатических условий, в частности повышении или понижении температуры окружающей среды. К этому может привести также чрезмерная вибрация накопителя, вызванная какими-нибудь внешними причинами. Кроме того, одной из причин появления подобных сообщений являются электрические помехи, возникающие при работе электродвигателей или других устройств, включенных в одну сеть с компьютером.

В том случае, если предупреждение вызвано внутренними причинами, в сообщении может говориться о необходимость замены накопителя. Если устройство находится на гарантии, обратитесь к поставщику и выясните, готов ли он его заменить. Отсутствие дальнейших сообщений говорит о случайности возникшей проблемы; в этом случае к замене накопителя прибегать не придется. Если во время работы появляются новые сообщения, рекомендую всетаки заменить используемый накопитель. Если удастся подключить новый и существующий (сбойный) накопители в одной системе, попробуйте перенести содержимое одного накопителя на другой, что позволит избежать повторной инсталляции приложений и загрузки скопированных данных.



Гидродинамические подшипники

Традиционные конструкции шпиндельных электродвигателей предусматривают использование шариковых подшипников, но существующие ограничения вынудили производителей искать альтернативные варианты. Основным недостатком шариковых подшипников является радиальное биение, возникающее в результате поперечного смещения шариков на величину зазора и составляющее примерно 0,1 микродюйма. Величина радиального биения, на первый взгляд, кажется весьма незначительной, но при увеличении плотности записи в современных накопителях это становится серьезной проблемой. Существующее биение является причиной возникновения хаотических поперечных движений жесткого диска, которые приводят к неустойчивым колебаниям дорожек по отношению к головкам чтения/записи. Кроме того, имеющиеся зазоры и соударения металлических шариков стали причиной повышения уровня генерируемого механического шума и вибраций, которые ухудшают рабочие характеристики накопителей, имеющих высокую скорость вращения.

Решением этой проблемы стал совершенно новый тип подшипника, получившего название гидродинамического, в котором основную роль играет высокопластичная смазка, находящаяся между шпинделем и втулкой двигателя. Используя высокопластичную гидродинамическую смазку, можно уменьшить радиальное биение подшипника до 0,01 микродюйма, что приводит к заметному снижению уровня вибрации и поперечного смещения жестких дисков. Благодаря гидродинамическим подшипникам повышается ударная прочность жесткого диска, улучшается регулирование скорости и снижается уровень генерируемого шума. На сегодняшнем рынке уже появился целый ряд накопителей, использующих гидродинамические подшипники. В частности, к их числу относятся накопители, имеющие очень высокую скорость вращения, высокую плотность записи данных или повышенные требования к уровню шума. За последние несколько лет гидродинамические подшипники уже стали привычными компонентами большинства жестких дисков.

Стоимость

Стоимость накопителей на жестких дисках постоянно снижается. Сейчас жесткий диск ATA емкостью 500 Гбайт можно приобрести чуть больше чем за 120 долларов, что составляет около 28 центов за один гигабайт. (В 1983 году жесткие диски емкостью 10 Мбайт были по цене 1800 долларов. Сегодня он стоил бы не более трети цента.)

Конечно же, стоимость жестких дисков будет постоянно снижаться, поэтому можно ожидать, что в дальнейшем у вас есть все предпосылки приобрести еще более емкие диски за меньшую стоимость.



Платы управления

В каждом накопителе на жестких дисках есть хотя бы одна плата. На ней монтируются электронные схемы для управления шпиндельным двигателем и приводом головок, а также для обмена данными с контроллером (представленными в заранее оговоренной форме). В накопителях ATA контроллер устанавливается непосредственно в накопителе, а для накопителей SCSI необходима дополнительная плата расширения.

Довольно часто неисправности возникают не в механических узлах накопителей, а в платах управления. На первый взгляд это утверждение может показаться странным, поскольку общеизвестно, что электронные узлы надежнее механических, тем не менее факт остается фактом. Поэтому многие неисправные накопители можно отремонтировать, заменив лишь плату управления, а не все устройство. К сожалению, ни один производитель накопителей не реализует платы управления отдельно. Поэтому единственная возможность получить плату управления — приобрести идентичный функционирующий накопитель и заменить поврежденные элементы деталями, снятыми с него. Разумеется, приобретать совершенно новый жесткий диск для ремонта имеет смысл только в том случае, если поврежденный накопитель содержит какие-либо нужные для вас данные. Подобный метод получил широкое распространение в компаниях, которые занимаются восстановлением данных. Они имеют в наличии множество самых распространенных накопителей, детали которых используются для замены неисправных компонентов и восстановления данных, содержащихся на жестких дисках пользовательских систем.

Для замены платы чаще всего достаточно самой обычной отвертки. Необходимо всего лишь выкрутить несколько винтов и отсоединить соответствующий кабель, после чего установить новую плату и повторить описанные действия в обратной последовательности. На этом процесс замены неисправной платы будет завершен.



Подкатегории