PersCom — Компьютерная Энциклопедия Компьютерная Энциклопедия

Информация Светодиодная подсветка для кондитерских холодильных витрин у нас.

PCI и PCI-X

Электрический интерфейс и конструктивы для шин PCI

Инициализация и определение режима работы шины PCI-X

Каждый сегмент PCI-X (физическая шина) должен работать в самом прогрессивном режиме, доступном всем его абонентам, включая и главный для этой шины мост. В стандартной шине PCI «прогрессивность» определяется только допустимой тактовой частотой (33 или 66 МГц), и свои способности карта сообщает по контакту B49 (M66EN, см. выше). В шине PCI-X появляются новые возможности: поддержка собственно протокола PCI-X (Mode 1 в терминах PCI-X 2.0) и ускоренных передач (Mode 2). Эти возможности карта сообщает через контакт B38 (PCIXCAP), который может быть подключен к шине GND через резистор определенного номинала или оставаться неподключенным (NC), как указано в первой таблице). Номиналы резисторов выбраны так, что мост может определить возможности карт в многослотовых шинах, когда цепи PCIXCAP всех карт соединяются параллельно (кроме резисторов на картах имеются и конденсаторы). Мост, которому подчиняется данная шина, проверяет состояние линий M66EN и PCIXCAP по началу сигнала сброса. В соответствии с увиденными возможностями (они будут соответствовать самому слабому абоненту) мост выбирает режим работы шины. Этот режим доводится до всех абонентов с помошью шаблона инициализации (PCI-X Initialization Pattern) — уровней сигналов PERR#, DEVSEL#, STOP# и TRDY# в момент окончания сигнала RST# (по его нарастающему фронту). К этому моменту на слоты уже подается соответствующее напряжение +VI/O. Возможные режимы шины и их шаблоны инициализации приведены во второй таблице.

Таблица №1

Соединение на карте для контактов Способности карты расширения
B49 (M66EN) B38 (PCIXCAP)
GND GND PCI 33 МГц
NC GND PCI 66 МГц
GND или NC GND через R1 PCI-X 66
GND или NC NC PCI-X 133
GND или NC GND через R2 PCI-X 266
GND или NC GND через R3 PCI-X 533

 

Таблица №2

Сигнал Режим шины (протокол) Частота,
 МГц
Контроль достоверности
PERR# DEVSEL# STOP# TRDY#
H H H H PCI 0-33 Четность
H H H H PCI 33-66 Четность
H H H L PCI-X Mode1 50-66 Четность
H H L H PCI-X Mode1 66-100 Четность
H H L L PCI-X Mode1 100-133 Четность
H L H H PCI-X Mode1 Резерв ECC
H L H L PCI-X Mode1 50-66 ECC
H L L H PCI-X Mode1 66-100 ECC
H L L L PCI-X Mode1 100-133 ECC
L H H H PCI-X266 Mode2 Резерв ECC
L H H L PCI-X266 Mode2 50-66 ECC
L H L H PCI-X266 Mode2 66-100 ECC
L H L L PCI-X266 Mode2 100-133 ECC
L L H H PCI-X266 Mode2 Резерв ECC
L L H L PCI-X266 Mode2 50-66 ECC
L L L H PCI-X266 Mode2 66-100 ECC
L L L L PCI-X266 Mode2 100-133 ECC

 



Стандартные слоты и карты PCI

Стандартные слоты PCI и PCI-X представляют собой щелевые разъемы, имеющие контакты с шагом 0,05 дюйма. Слоты расположены несколько дальше от задней панели, чем ISA/EISA или MCA. Компоненты карт PCI расположены на левой поверхности плат. По этой причине крайний PCI-слот обычно совместно использует посадочное место адаптера (прорезь на задней стенке корпуса) с соседним ISA-слотом. Такой слот называют разделяемым (shared slot), в него может устанавливаться либо карта ISA, либо PCI.

Карты PCI могут предназначаться для интерфейсных сигналов уровня 5 В и 3,3 В, а также быть универсальными. Слоты PCI имеют уровни сигналов, соответствующие питанию микросхем PCI-устройств системной платы (включая главный мост): либо 5 В, либо 3,3 В. Во избежание ошибочного подключения слоты имеют ключи, определяющие номинал напряжения. Ключами являются пропущенные ряды контактов 12, 13 и/или 50, 51:

  • для слота на 5 В ключ (перегородка) расположен на месте контактов 50, 51 (ближе к передней стенке корпуса); такие слоты отменены в PCI 3.0;
  • для слота на 3,3 В перегородка находится на месте контактов 12, 13 (ближе к задней стенке корпуса);
  • на универсальных слотах перегородок нет;
  • на краевых разъемах карт 5 В имеются ответные прорези только на месте контактов 50, 51; такие карты отменены в PCI 2.3;
  • на картах 3,3 В прорези только на месте контактов 12, 13;
  • на универсальных картах имеется оба ключа (две прорези).

Ключи не позволяют установить карту в слот с неподходящим напряжением питания. Карты и слоты различаются лишь питанием буферных схем, которое поступает с линий +V I/O:

  • на слоте «5 В» на линии +V I/O подается + 5 В;
  • на слоте «3,3 В» на линии +V I/O подается + (3,3–3,6) В;
  • на карте «5 В» буферные микросхемы рассчитаны только на питание + 5 В;
  • на карте «3,3 В» буферные микросхемы рассчитаны только на питание + (3,3– 3,6) В;
  • на универсальной карте буферные микросхемы допускают оба варианта питания и будут нормально формировать и воспринимать сигналы по спецификациям 5 или 3,3 В, в зависимости от типа слота, в который установлена карта (то есть от напряжения на контактах + V I/O).

На слотах обоих типов присутствуют питающие напряжения + 3,3, + 5, + 12 и –12 В на одноименных линиях. В PCI 2.2 определена дополнительная линия 3.3Vaux — «дежурное» питание + 3,3 В для устройств, формирующих сигнал PME# при отключенном основном питании.

ПРИМЕЧАНИЕ!

Выше приведены положения из официальных спецификаций PCI. На современных системных платах пока чаще всего встречаются слоты, по ключу являющиеся 5вольтовыми. Однако при этом напряжение на линиях +V I/O и уровни сигналов интерфейса являются 3,3-вольтовыми. В этих слотах нормально работают все современные карты с 5-вольтовыми ключами — их интерфейсные схемы работают при питании как 3,3, так и 5 В. Интерфейс с 5-вольтовым питанием может работать только на частоте до 33 МГц. «Настоящие» 5-вольтовые системные платы были только для процессоров 486 и первых моделей Pentium.

Наибольшее распространение получили 32-битные слоты, заканчивающиеся контактами A62/B62. 64-битные слоты встречаются реже, они длиннее и заканчиваются контактами A94/B94. Конструкция разъемов и протокол позволяют устанавливать 64-битные карты как в 64-битные, так и в 32-битные разъемы, и наоборот, 34-битные карты как в 32-битные, так и в 64-битные разъемы. При этом разрядность обмена будет соответствовать слабейшему компоненту.

Для сигнализации об установке карты и потребляемой ею мощности на разъемах PCI предусмотрено два контакта — PRSNT1# и PRSNT2#, из которых хотя бы один соединяется на карте с шиной GND. С их помощью система может определить присутствие карты в слоте и ее энергопотребление. Кодирование потребляемой мощности приведено в таблице; здесь приведены значения и для малогабаритных карт Small PCI.

Соединение контактов
Потребляемая мощность
PRSNT1# PRSNT2# PCI Small PCI
- - Нет карты Нет карты
GND - 25 Вт макс 10 Вт макс
- GND 15 Вт макс 5 Вт макс
GND GND 7,5 Вт макс 2 Вт макс

Карты и слоты PCI-X по механическим ключам соответствуют 3,3-вольтовым картам и слотам; напряжение питания + V I/O для PCI-X Mode 2 устанавливается 1,5 В.

На рисунке изображены карты PCI в конструктиве PC/AT-совместимых компьютеров. Полноразмерные карты (Long Card, 107×312 мм) используются редко, чаще применяются укороченные платы (Short Card, 107×175 мм), но многие карты имеют и меньшие размеры. Карта имеет обрамление (скобку), стандартное для конструктива ISA (раньше встречались карты и с обрамлением в стиле MCA IBM PS/2). У низкопрофильных карт (Low Profile) высота не превышает 64,4 мм; их скобки также имеют меньшую высоту. Такие карты могут устанавливаться вертикально в 19-дюймовые корпуса высотой 2U (около 9 см).

Назначение выводов разъема карт PCI/PCI-X приведено в таблице ниже.

Ряд BРяд AРяд BРяд A
-12В 1 TRST# GND/M66EN1 49 AD9
TCK 2 +12 В GND/Ключ 5 В/MODE2 50 GND/Ключ 5 В
GND 3 TMS GND/Ключ 5 В 51 GND/Ключ 5 В
TDO 4 TDI AD8 52 C/BE0#
+5 В 5 +5 В AD7 53 +3,3 В
+5 В 6 INTA# +3,3 В 54 AD6
INTB# 7 INTC# AD5 55 AD4
INTD# 8 +5 В AD3 56 GND
PRSNT1# 9 ECC52 GND 57 AD2
ECC42 10 +V I/O AD1 58 AD0
PRSNT2# 11 ECC32 +V I/O 59 +V I/O
GND/Ключ 3,3 В 12 GND/Ключ 3,3 В ACK64#/ ECC1 60 REQ64#/ ECC6
GND/Ключ 3,3 В 13 GND/Ключ 3,3 В +5 В 61 +5 В
ECC22 14 3.3Vaux3 +5 В 62 +5 В
GND 15 RST# Конец 32-битного разъема
CLK 16 +V I/O Резерв 63 GND
GND 17 GNT# GND 64 C/BE7#
REQ# 18 GND C/BE6# 65 C/BE5#
+V I/O 19 PME#3 C/BE4# 66 +V I/O
AD31 20 AD30 GND 67 PAR64/ECC72
AD29 21 +3,3 В AD63 68 AD62
GND 22 AD28 AD61 69 GND
AD27 23 AD26 +V I/O 70 AD60
AD25 24 GND AD59 71 AD58
+3,3 В 25 AD24 AD57 72 GND
C/BE3# 26 IDSEL GND 73 AD56
AD23 27 +3,3 В AD55 74 AD54
GND 28 AD22 AD53 75 +V I/O
AD21 29 AD20 GND 76 AD52
AD19 30 GND AD51 77 AD50
+3.3 В 31 AD18 AD49 78 GND
AD17 32 AD16 +V I/O 79 AD48
C/BE2# 33 +3,3 В AD47 80 AD46
GND 34 FRAME# AD45 81 GND
IRDY# 35 GND GND 82 AD44
+3,3 В 36 TRDY# AD43 83 AD42
DEVSEL# 37 GND AD41 84 +V I/O
PCIXCAP4 38 STOP# GND 85 AD40
LOCK# 39 +3,3 В AD39 86 AD38
PERR# 40 SMBCLK5 AD37 87 GND
+3,3 В 41 SMBDAT5 +V I/O 88 AD36
SERR# 42 GND AD35 89 AD34
+3,3 В 43 PAR/ECC0 AD33 90 GND
C/BE1# 44 AD15 GND 91 AD32
AD14 45 +3,3 В Резерв 92 Резерв
GND 46 AD13 Резерв 93 GND
AD12 47 AD11 GND 94 Резерв
AD10 48 GND Конец 64-битного разъема

Примечание!

1 - Сигнал M66EN определен в PCI 2.1 только для слотов на 3,3 В.
2 — Сигнал введен в PCI-X 2.0 (прежде был резерв).
3 — Сигнал введен в PCI 2.2 (прежде был резерв).
4 — Сигнал введен в PCI-X (в PCI — GND).
5 — Сигналы введены в PCI 2.3. В PCI 2.0 и 2.1 контакты A40 (SDONE#) и A41 (SBOFF#) использовались для слежения за кэшем; в PCI 2.2 они были освобождены (для совместимости на системной плате эти цепи подтягивались к высокому уровню резисторами 5 кОм).

На слотах PCI имеются контакты для тестирования адаптеров по интерфейсу JTAG (сигналы TCK, TDI, TDO, TMS и TRST#). На системной плате эти сигналы задействованы не всегда, но они могут и организовывать логическую цепочку тестируемых адаптеров, к которой можно подключить внешнее тестовое оборудование. Для непрерывности цепочки на карте, не использующей JTAG, должна быть связь TDI–TDO.

На некоторых старых системных платах позади одного из слотов PCI встречается разъем Media Bus, на который выводятся сигналы ISA. Он предназначен для размещения на карте PCI звукового чипсета, предназначенного для шины ISA. Большинство сигналов PCI соединяются по чистой шинной топологии, то есть одноименные контакты слотов одной шины PCI электрически соединяются друг с другом. Из этого правила есть несколько исключений:

  • сигналы REQ# и GNT# индивидуальны для каждого слота, они соединяют слот с арбитром (обычно — мостом, подключающим эту шину к вышестоящей);
  • сигнал IDSEL для каждого слота соединяется (возможно, через резистор) с одной из линий AD[31:11], задавая номер устройства на шине;
  • сигналы INTA#, INTB#, INTC#, INTD# циклически сдвигаются по контактам, обеспечивая распределение запросов прерываний;
  • сигнал CLK заводится на каждый слот индивидуально от своего выхода буфера синхронизации; длина подводящих проводников выравнивается, обеспечивая синхронность сигнала на всех слотах (для 33 МГц допуск ± 2 нс, для 66 МГц — ± 1 нс).

Когда обычная системная плата используется в низкопрофильных корпусах, для подключения карт расширения можно использовать пассивный переходник (Riser Card), устанавливаемый в один из слотов PCI. Если в переходник устанавливается более одной карты, то для реализации вышеупомянутых исключений используют выносные разъемы PCI (маленькие печатные платы), с помощью которых вышеперечисленные сигналы берутся от других, свободных слотов PCI на системной плате. Переставляя эти разъемы, можно менять номера устройств на слотах переходника, а главное — их раскладку по линиям запросов прерывания. Беда такого подключения — длинные (10–15 см) шлейфы, соединяющие переходник со слотами. Все сигналы в этом шлейфе передаются по параллельным неперевитым проводам, что очень плохо для сигнала CLK: его форма искажается и вносится значительная задержка. Результатом могут быть внезапные «зависания» компьютера без всяких диагностических сообщений. В такой ситуации может помочь отделение провода CLK от общего шлейфа и встречное скручивание его свободного конца (это уменьшает индуктивность проводника). Остальные сигналы в шлейфе не так критичны к качеству разводки. Лучшим решением будет использование низкопрофильных карт PCI, устанавливаемых в системную плату без переходников. Проблема не возникала бы, если бы на переходнике была установлена микросхема источника синхронизации, раздающего синхросигнал на все слоты переходника. Однако это требует применения микросхем с ФАПЧ (PLL), привязывающих свой выходной сигнал к сигналу синхронизации от системной платы, что несколько удорожает переходник.



Электрический интерфейс

 Для работы на шине PCI используются микросхемы КМОП (CMOS), причем имеются две спецификации: с напряжениями питания интерфейсных схем 5 и 3,3 В. Для них применимы параметры сигналов по постоянному току, приведенные в таблице. Однако мощность интерфейсных элементов (транзисторов для вентилей) выбрана меньшей, чем требовалось бы для переключения сигналов на высокой частоте (33 или 66 МГц). Здесь используется эффект отражения сигналов, формируемых микросхемами на проводниках шины, от несогласованных концов этих проводников, являющихся для таких высоких частот длинными линиями. На концах проводников шины нет терминаторов, поэтому от них приходящая волна сигнала отражается с тем же знаком и с той же амплитудой. Складываясь с прямым сигналом, обратная волна и обеспечивает нужный приемнику уровень сигнала. Таким образом, передатчик генерирует сигнал, уровень которого до прихода отраженного сигнала находится между уровнями переключения, и достигает требуемого уровня только после прихода отраженной волны. Это накладывает ограничение на физическую протяженность шины: сигнал должен успеть обернуться (дойти до конца и вернуться отраженным) за время, составляющее менее трети периода синхронизации (то есть 10 нс при 33 МГц, 5 нс при 66 МГц). 

 
Линии управляющих сигналов FRAME#, TRDY#, IRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, INTA#, INTB#, INTC#, INTD#, REQ64# и ACK64# на системной плате подтягиваются к шине питания резисторами (типичные номиналы: 2,7 кОм для версии 5 В и 8,2 кОм для 3,3 В), чтобы не было ложных срабатываний при пассивности всех агентов шины.
 
Электрические спецификации рассчитаны на два типовых варианта нагрузки одной шины: 2 устройства PCI на системной плате плюс 4 слота или 6 устройств плюс 2 слота. При этом подразумевается, что одно устройство на каждую линию шины PCI дает только единичную КМОП-нагрузку. В слоты могут устанавливаться карты, также дающие только единичную нагрузку. При использовании компонентов и трассировки плат с характеристиками, превосходящими требования спецификации, возможны и иные сочетания числа слотов и устройств. Так, например, часто встречаются системные платы и с пятью слотами на одной физической шине. На длину проводников, а также на топологию расположения элементов и проводников для карт расширения накладываются жесткие ограничения. Длина сигнальных проводников не должна превышать 1,5 дюйма (3,8 см). Из вышесказанного понятно, что изготовление самодельных карт расширения на логических микросхемах средней степени интеграции, как это можно было делать для шин ISA, для PCI невозможно.
 
Параметр 5 В интерфейс 3,3 В интерфейс
Входное напряжение низкого уровня, В –0,5 ≤ Uil ≤ 0,8 –0,5 ≤ Uil ≤ 0,3×Vcc
Входное напряжение высокого уровня, В 2 ≤ Uih ≤ Vcc +0,5 Vcc/2 ≤ Uih ≤ Vcc +0,5
Выходное напряжение низкого уровня, В Uol ≤ 0,55 Uol ≤ 0,1×Vcc
Выходное напряжение высокого уровня, В Uoh ≥ 0,8 Uoh ≥ 0,9×Vcc
Напряжение питания VCC, В 4,75 ≤ Ucc ≤ 5,25 3,0 ≤ Ucc ≤ 3,6
 
Тактовая частота шины определяется по возможностям всех абонентов шины, включая и мосты (и главный мост, входящий в чипсет системной платы). Высокая частота шины PCI 66 МГц может устанавливаться тактовым генератором только при высоком уровне на линии M66EN. Таким образом, установка любой карты, не поддерживающей 66 МГц (с заземленным контактом этой линии), приведет к понижению частоты шины до 33 МГц. Серверные системные платы, на которых имеется несколько шин PCI, позволяют использовать на разных шинах разные частоты (66 и 33 МГц). Так, например, можно на 64-битных слотах использовать частоту 66 МГц, а на 32-битных — 33. Разгон нормальной частоты 33 МГц до 40–50 МГц аппаратно не контролируется, но может приводить к ошибкам работы карт расширения.
 
Согласно спецификации PCI, устройства должны нормально работать при снижении частоты от номинальной (33 МГц) до нуля. Изменение частоты во время работы устройств допустимо при условии, чтобы все время соблюдались ограничения по минимальной длительности высокого и низкого уровней сигнала CLK. Останавливаться сигнал CLK должен только на низком уровне. После возобновления подачи импульсов CLK устройства должны продолжить работу, как будто остановки синхронизации и не было.
 
При работе с частотой 66 МГц и выше для снижения электромагнитных помех (EMI) от сигнала фиксированной частоты может применяться расширение спект ра сигнала CLK (spread spectrum): неглубокая частотная модуляция с частотой модуляции 30–33 кГц. Если в устройствах для синхронизации используются схемы с ФАПЧ (PLL), то их быстродействие должно быть достаточным для отработки этой модуляции. В спецификации PCI-X диапазоны допустимых изменений тактовой частоты зависят от режима шины.