Накопители на жёстких дисках

Накопители на жестких дисках

Скорость передачи данных

Вероятно, наиболее важной характеристикой при оценке общей производительности накопителя является скорость передачи данных, но, с другой стороны, она же считается наименее понятной. Дело в том, что в настоящее время для каждого дисковода можно определить сразу несколько скоростей передачи данных, чему, как правило, не придается значение. Не позвольте себе обмануться наличием интерфейса ATA-133 или SATA-150. Гораздо более важным показателем является средняя скорость передачи данных самого жесткого диска, а этот показатель может быть значительно ниже производительности интерфейса. Скорость передачи данных устройством представляет собой усредненную скорость операций чтения и записи на диск. В то же время скорость передачи интерфейса определяет объем данных, которые можно переместить между материнской платой и буфером устройства за единицу времени. На общую производительность жесткого диска сильное влияние оказывает и частота вращения шпинделя (несложно понять, что диск, вращающийся со скоростью 10000 об/мин способен быстрее записать или считать информацию, чем диск, имеющий скорость вращения 7200 об/мин). При оценке скорости обращайте внимание на производительность именно носителя, а не интерфейса.

Дополнительную путаницу вносит то, что производители жестких дисков могут сообщатьлюбую из семи доступных скоростей передачи данных, которыми характеризуется любой диск. Наименее важной из них является номинальная скорость передачи данных интерфейса. В устройствах PATA она может достигать 100 или 133 Мбайт/с, а в устройствах SATA — 150 или 300 Мбайт/с. К сожалению, многие оценивают эту характеристику как способность диска записывать и считывать информацию с такой скоростью, что далеко не так. Более важной характеристикой является скорость передачи данных носителя. Обычно она представляется несколькими показателями: минимальными и максимальными скоростями формальной и фактической передачи данных, а также их средними значениями. Если средние значения отсутствуют, их несложно вычислить и вручную.

Средняя скорость передачи данных считается более важной характеристикой, чем скорость передачи данных интерфейса. Это связано с тем, что средняя скорость представляет собой действительную скорость непосредственного считывания данных с поверхности жесткого диска. При этом максимальная скорость является скорее ожидаемой постоянной скоростью передачи данных. Скорость передачи носителя обычно определяется ее минимальной и максимальной величинами, хотя многие компании, занимающиеся производством жестких дисков, указывают только максимальное значение скорости.

Наличие минимального и максимального значений скорости передачи носителя связано с использованием в современных накопителях так называемой зонной записи данных. В этом случае количество секторов, приходящихся на каждую дорожку внутренних цилиндров, меньше, чем в наружных. Как правило, жесткий диск разделен на 16 или более зон, причем количество секторов на каждой дорожке (а следовательно, скорость передачи данных) во внутренних зонах примерно вдвое меньше, чем во внешних. Скорость вращения жесткого диска практически постоянна, поэтому скорость считывания данных из внешних цилиндров примерно вдвое выше скорости считывания из внутренних.

Существует определенное различие между формальной и фактической скоростями передачи данных. Формальная скорость определяет, насколько быстро биты (единицы емкости памяти) могут быть считаны с поверхности жесткого диска. Далеко не все биты являются битами данных (это может быть промежуток между секторами или идентификаторы битов). Кроме того, следует учитывать время, затрачиваемое при поиске данных на перемещение головок с дорожки на дорожку. Таким образом, фактическая скорость передачи данных представляет собой реальную скорость считывания данных с диска или их записи на диск.

Учтите, что большинство производителей указывают только фактическую скорость, которая, как показывают несложные вычисления, составляет примерно три четверти формальной скорости передачи данных. Это связано с тем, что пользовательские данные на каждой дорожке составляют примерно три четверти всех имеющихся данных, определенная часть которых используется управляющими модулями или представляет собой код коррекции ошибок (ЕСС), идентификатор (ID) и другие служебные данные.

Рассмотрим в качестве примера дисковод Hitachi Deskstar T7K500, который на сегодняшний день является одним из самых быстрых накопителей SATA. Его основные параметры таковы: скорость вращения — 7200 об/мин и полная поддержка скорости передачи данных интерфейса SATA-300 (пропускная способность интерфейса между контроллером и системной платой — 300 Мбайт/с). Следует заметить, что фактическая скорость передачи данных гораздо ниже (см. таблицу ниже).

Как видите, реальная скорость передачи носителя колеблется в пределах от 88,47 до 44,24 Мбайт/с, что составляет в среднем 66,36 Мбайт/с, т.е. менее четверти от скорости передачи интерфейса SATA-300. Смею вас заверить, что вы не будете разочарованы, приобретая дисковод со скоростью передачи данных, равной 66,36 Мбайт/с. Фактически этот накопитель является одним из самых быстрых дисководов SATA на современном рынке.

 

Меня часто спрашивают о возможности модификации интерфейса ATA. Во многих компьютерах используются системные платы, поддерживающие только режимы ATA-100 (Ultra DMA Mode 5) и SATA-150 (1,5 Гбит/с) и не поддерживающие более быстрые спецификации. Зная фактические скорости передачи носителей большинства дисководов, вы поймете, почему я не рекомендую устанавливать в таких системах отдельные хост-адаптеры ATA-100 или ATA-133 (за исключением, конечно, тех случаев, когда необходимо подсоединить несколько дополнительных жестких дисков). Если говорить о повышении эффективности, то подобная модификация не даст никакого практического результата. Это связано с тем, что средняя скорость передачи данных используемых дисководов ниже скорости интерфейса ATA-66, не говоря уже об интерфейсах ATA-133, SATA-150 и SATA-300.

Существует два основных фактора, непосредственно влияющих на скорость передачи данных: скорость вращения диска и плотность линейной записи, или количество секторов на дорожке. Например, при равном количестве секторов на дорожке скорость передачи данных будет выше у дисковода, имеющего большую скорость вращения. Аналогично при равной скорости вращения накопитель с большей плотностью записи будет иметь большую скорость передачи. При сравнении эффективности накопителей следует учитывать оба фактора.

Как следует из приведенного примера, скорость передачи интерфейса никакого значения не имеет. Поэтому, если вы подумываете о приобретении новой системной платы или дополнительной платы хост-адаптера, пытаясь таким образом повысить производительность дисковода, то лучше потратьте деньги на что-нибудь другое. Повышение производительности интерфейса, используемого для передачи данных из буфера контроллера дисковода в системную плату, также не принесет ожидаемого результата. Объем буфера подобного типа составляет в среднем 4 Мбайт; установка диска с буфером даже емкостью 16 Мбайт даст небольшой выигрыш только приложениям, потребляющим с диска повторяющиеся данные. Совсем недавно были выпущены диски с флэш-буферами, названные гибридными дисками, которые поддерживают кэш SuperFetch в системе Windows Vista. Однако ввиду относительно низкого быстродействия флэш-памяти эта технология в основном предназначена для использования в ноутбуках, где способна продлить жизнь аккумуляторной батарее и, может быть, немного повысить производительность.

При прочих равных условиях жесткий диск, вращающийся с более высокой частотой, имеет более высокую скорость передачи данных, которая не зависит от скорости передачи интерфейса. К сожалению, параметры накопителей совпадают довольно редко, поэтому для получения более объективной информации следует обратиться к характеристикам дисковода, указанным в спецификации или техническом руководстве.

Не следует сравнивать накопители по какому-нибудь одному параметру, скажем, по скорости передачи данных интерфейса или частоте вращения жесткого диска, так как эти сведения могут оказаться обманчивыми. Быстродействие интерфейса не играет практически никакой роли, но, несмотря на то что скорость вращения является более важным параметром, существуют накопители, скорость передачи данных которых ниже скорости передачи данных более медленных устройств. Формальное сравнение технических характеристик ничего не дает. При выборе жестких дисков не забывайте, что скорость передачи данных является, вероятно, наиболее важным параметром, на который следует обращать внимание: чем выше скорость, тем лучше.

Для получения сведений о скоростях передачи конкретного дисковода обратитесь к спецификации или документации/руководству, прилагаемому к накопителю. Обычно необходимую документацию можно загрузить с сайта изготовителя. В ней часто указываются максимальное и минимальное количества секторов на дорожке. Эти величины, а также скорость вращения жесткого диска могут быть использованы для вычисления фактической скорости передачи данных. Для этого необходимо определить точное количество физических секторов, приходящихся на каждую дорожку внешней и внутренней зон. Следует учесть, что конфигурация многих накопителей поддерживает трансляцию секторов, т.е. количество секторов на дорожке, сообщенное BIOS, имеет мало общего с фактическими характеристиками дисковода. Для вычислений лучше подходят не параметры, сообщенные BIOS, а фактические физические параметры жесткого диска.

Зная количество секторов на дорожке (SPT) и скорость вращения жесткого диска, можно без труда определить фактическую скорость передачи носителя (MTR), выраженную в мегабайтах в секунду. Для этого необходимо воспользоваться следующей формулой:

MTR = SPT×512×RPM/60/1000000.

Здесь SPT (Sector Per Track) — количество секторов на дорожке, 512 — количество байтов данных в каждом секторе, RPM (Rotations Per Minute) — частота вращения дисков (оборотов в минуту), 60 — количество секунд в минуте.

Например, накопитель Hitachi Deskstar T7K500, скорость вращения которого равна 7200 об/мин, содержит в среднем 1080 секторов на дорожке. Средняя скорость передачи носителя для данного накопителя определяется следующим образом:

688×512×(7200/60)/1000000 = 42,27 Мбайт/с.

С помощью этой формулы можно вычислить реальную скорость передачи данных любого жесткого диска. Для этого достаточно знать скорость вращения и среднее количество секторов на дорожке.



Sitelinkx by eXtro-media.de

Форматирование высокого уровня

При форматировании высокого уровня операционная система создает структуры для работы с файлами и данными. В каждый раздел (логический диск) заносятся загрузочный сектор тома (VBS), две копии таблицы размещения файлов (FAT) и корневой каталог (Root Directory). С помощью этих структур данных операционная система распределяет дисковое пространство, отслеживает расположение файлов и даже во избежание проблем “обходит” дефектные участки на диске.

В сущности, форматирование высокого уровня — это не столько форматирование, сколько создание оглавления диска и таблицы размещения файлов. “Настоящее” форматирование — это форматирование низкого уровня, при котором диск разбивается на дорожки и секторы. С помощью команды FORMAT на гибком диске выполняются сразу оба типа форматирования, а для жесткого — только форматирование высокого уровня. Форматирование низкого уровня на жестком диске выполняет его изготовитель; оно чисто технически не может быть осуществлено конечным пользователем. Правда, некоторые из производителей выпускают свои программы инициализации, которые являются своеобразной заменой низкоуровневого форматирования. Программы инициализации не создают заголовки секторов, однако они перезаписывают все области данных и помечают сбойные секторы (по возможности замещая их запасными, хорошими). Обычно программы инициализации используются, когда необходимо восстановить поврежденное форматирование или уничтожить все данные на диске.

Сервопривод

Для управления приводами с подвижной катушкой в разное время использовались три способа построения петли обратной связи:

  • со вспомогательным “клином”;
  • со встроенными кодами;
  • с выделенным диском.

Они различаются технической реализацией, но, по сути, предназначены для достижения одной и той же цели: обеспечивать постоянную корректировку положения головок и их наведение (позиционирование) на соответствующий цилиндр. Основные различия между ними сводятся к тому, на каких участках поверхностей дисков записываются сервокоды.

При всех способах построения петли обратной связи для ее работы необходима специальная информация (сервокоды), которая записывается на диск при его изготовлении. Обычно она записывается в так называемом коде Грея. В этой системе кодирования при переходе от одного числа к следующему или предыдущему изменяется всего один двоичный разряд. При таком подходе информация считывается и обрабатывается намного быстрее, чем при обычном двоичном кодировании, и определение местоположения головки происходит практически без задержки. Сервокоды записываются на диск при сборке накопителя и не изменяются в течение всего срока его эксплуатации.

Запись сервокодов выполняется на специальном устройстве, в котором головки последовательно перемещаются на строго определенные позиции, и в этих положениях на диски записываются упомянутые выше коды. Для точной установки головок в таких устройствах используется лазерный прицел, а расстояния определяются методом интерференции, т.е. с точностью до долей волны лазерного излучения. Поскольку перемещение головок в таком устройстве осуществляется механически (без участия собственного привода накопителя), все работы проводятся в чистом помещении либо с открытой крышкой блока HDA, либо через специальные отверстия, которые по окончании записи сервокодов заклеиваются герметизирующей лентой. Вы можете найти эти заклеенные отверстия на блоке HDA, причем на ленте обязательно будет написано, что, оторвав ее, вы потеряете право на гарантийное обслуживание.

Устройства для записи сервокодов стоят около 50 тыс. долларов и часто предназначаются для какой-либо определенной модели накопителя. Некоторые компании, занимающиеся ремонтом накопителей, располагают такими устройствами, т.е. могут выполнить перезапись сервокодов при повреждении накопителя. Если же в ремонтной компании нет устройства для записи сервокодов, то неисправный накопитель отсылается изготовителю.

К счастью, при обычных операциях считывания и записи удалить сервокоды невозможно. Этого нельзя сделать даже при форматировании низкого уровня. Иногда можно услышать страшные истории о том, как в накопителях IDE сервокоды стирались при неправильном форматировании низкого уровня. Конечно, плохо отформатировав диск, вы можете на порядок ухудшить его параметры, но сервокоды надежно защищены, и удалить их невозможно.

Поскольку привод с подвижной катушкой отслеживает реальное положение дорожек, ошибки позиционирования, возникающие со временем в накопителях с шаговым двигателем, в данных устройствах отсутствуют. На их работе не сказывается также расширение и сжатие дисков, происходящее вследствие колебаний температур. Во многих современных накопителях с приводом от подвижной катушки в процессе работы через определенные промежутки времени выполняется температурная калибровка. Эта процедура заключается в том, что все головки поочередно переводятся с нулевого на какой-либо другой цилиндр. При этом с помощью встроенной схемы проверяется, насколько сместилась заданная дорожка относительно своего положения в предыдущем сеансе калибровки, и вычисляются необходимые поправки, которые заносятся в оперативное запоминающее устройство в самом накопителе. Впоследствии эта информация используется при каждом перемещении головок, позволяя устанавливать их с максимальной точностью.

В большинстве накопителей температурная калибровка выполняется через каждые 5 мин в течение первого получаса после включения питания, а затем через каждые 25 мин. Некоторые пользователи полагают, что произошла ошибка при считывании данных, но на самом деле просто подошло время очередной калибровки. Заметим, что эта процедура выполняется в большинстве современных интеллектуальных накопителей (IDE и SCSI), что в конечном итоге позволяет подводить головки к дорожкам с максимально возможной точностью.

Однако по мере распространения мультимедийных программ подобные перерывы в работе накопителей становятся помехой. Дело в том, что при выполнении калибровки прекращаются все процессы обмена данными с накопителем и, например, воспроизведение звуковых или видеофрагментов приостанавливается. Поэтому производители таких накопителей начали выпуск их специальных A/V-модификаций (Audio Visual — A/V), в которых начало очередной температурной калибровки задерживается до тех пор, пока не закончится текущий сеанс обмена данными. Большинство новых моделей устройств ATA относится к этому типу, т.е. воспроизведение звуковых и видеофрагментов не прерывается процедурами калибровки. Накопители АТА, поддерживающие функцию A/V, также используются в компьютерных телевизионных приставках, применяемых для цифровой записи. К приставкам такого рода относятся хорошо известные устройства TiVo и ReplayTV.

Следует отметить, что большинство устройств, которые осуществляют автоматическую температурную калибровку, выполняют также и развертку диска. Дело в том, что, хотя головки не касаются носителя, они располагаются настолько близко к нему, что начинает сказываться воздушное трение. Несмотря на сравнительно малую величину, оно все же может привести к преждевременному износу поверхности диска в том случае, если головка будет постоянно (или почти постоянно) находиться над одной и той же дорожкой. Чтобы этого не произошло, выполняется следующая процедура. Если головка слишком долго остается неподвижной (т.е. операции считывания и записи не выполняются), то она автоматически перемещается на случайно выбранную дорожку, расположенную ближе к краям диска, т.е. в ту область, где линейная скорость диска максимальна, а следовательно, воздушный просвет между его поверхностью и головкой имеет наибольшую величину. Если после перевода головки диск снова окажется “в простое” в течение такого же времени, то головка переместится на другую дорожку, и т.д.

Функция развертки, обеспечивающая равномерное распределение рабочего давления по поверхности диска, позволяет предотвратить расположение головки над одним цилиндром в течение длительного времени. Трение, возникающее между головкой и поверхностью жесткого диска, со временем может привести к повреждению носителя. Головки не имеют непосредственного контакта с носителем, однако находятся настолько близко, что постоянное воздушное давление, создаваемое головкой, плавающей над цилиндром, может стать причиной избыточного износа. На рисунке ниже показаны вспомогательный клин и встроенные сервокоды.

 

Вспомогательный клин и встроенные сервокоды

Вспомогательный клин

Такая система записи сервокодов использовалась в первых накопителях с подвижной катушкой. Вся информация, необходимая для позиционирования головок, записывалась в кодах Грея в узком секторе (“клине”) каждого цилиндра непосредственно перед индексной меткой. Индексная метка обозначает начало каждой дорожки, т.е. вспомогательная информация записывается в предындексном интервале, расположенном в конце каждой дорожки. Этот участок необходим для компенсации неравномерности вращения диска и тактовой частоты записи, и контроллер диска обычно к нему не обращается.

Некоторым контроллерам необходимо сообщать о том, что к ним подключен накопитель со вспомогательным клином. В результате они корректируют (сокращают) длину секторов, чтобы поместить область вспомогательного клина.

Самый существенный недостаток подобной системы записи состоит в том, что считывание происходит только один раз при каждом обороте диска. Это означает, что во многих случаях для точного определения и коррекции положения головок диск должен совершить несколько оборотов. Недостаток этот был очевиден с самого начала, поэтому подобные системы никогда не были широко распространены, а сейчас и вовсе не используются.

Встроенные сервокоды

Такой метод реализации обратной связи представляет собой улучшенный вариант системы со вспомогательным клином. В данном случае сервокоды записываются не только в начале каждого цилиндра, но и перед началом каждого сектора. Это означает, что сигналы обратной связи поступают на схему привода головок несколько раз в течение каждого оборота диска, и головки устанавливаются в нужное положение намного быстрее. Еще одно преимущество (по сравнению с системой со специализированным диском) заключается в том, что сервокоды записываются на всех дорожках, поэтому может быть скорректировано положение каждой головки (это касается тех случаев, когда отдельные диски в накопителе нагреваются или охлаждаются поразному либо подвергаются индивидуальным деформациям).

Описанный способ используется в большинстве современных накопителей. Как и в системах со вспомогательным клином, встроенные сервокоды защищены от стирания, и любые операции записи блокируются, если головки оказываются над участками со служебной информацией. Поэтому даже при форматировании низкого уровня удалить сервокоды невозможно.

Система со встроенными сервокодами работает лучше, чем со вспомогательным клином, потому что служебная информация (сервокоды) считывается несколько раз за каждый оборот диска. Но вполне очевидно, что еще более эффективной должна быть система, при которой цепь обратной связи работает непрерывно, т.е. сервокоды считываются постоянно.

Системы с выделенным диском

При реализации данного способа сервокоды записываются вдоль всей дорожки, а не только один раз в ее начале или в начале каждого сектора. Естественно, если так поступить со всеми дорожками накопителя, то в нем не останется места для данных. Поэтому одна сторона одного из дисков выделяется исключительно для записи сервокодов. Термин выделенный диск означает, что одна сторона диска предусмотрена только для записи служебной информации (сервокодов) и данные здесь не хранятся. Такой подход на первый взгляд может показаться довольно расточительным, но необходимо учесть, что ни на одной из сторон остальных дисков сервокоды уже не записываются. Поэтому общие потери дискового пространства оказываются примерно такими же, как и при использовании системы встроенных кодов.

При сборке накопителей с выделенным диском одна из сторон определенного диска изымается из нормального использования для операций чтения/записи; вместо этого на ней записывается последовательность сервокодов, которые в дальнейшем используются для точного позиционирования головок. Причем обслуживающая эту сторону диска сервоголовка не может быть переведена в режим записи, т.е. сервокоды, как и во всех рассмотренных выше системах, невозможно стереть ни при обычной записи данных, ни при форматировании низкого уровня. На рисунке ниже показана схема накопителя с выделенным для сервокодов диском. Чаще всего верхняя или одна из центральных головок предназначена для считывания сервокодов.

 

Система с выделенным диском

Когда в накопитель поступает команда о переводе головок на конкретный цилиндр, внутреннее электронное устройство использует полученные сервоголовкой сигналы для точного определения положения всех остальных головок. В процессе движения головок номера дорожек непрерывно считываются с поверхности специализированного диска. Когда под сервоголовкой оказывается искомая дорожка, привод останавливается. После этого выполняется точная настройка положения головок и лишь затем выдается сигнал разрешения записи. И хотя только одна головка (сервоголовка) используется для считывания сервокодов, все остальные смонтированы на общем жестком каркасе, поэтому если одна головка находится над нужным цилиндром, то и все остальные будут находиться над ним.

Отличительный признак накопителя с выделенным диском — нечетное количество головок. Например, в накопителе MK-538FB компании Toshiba емкостью 1,2 Гбайт установлено 8 дисков, в то время как головок чтения/записи — всего 15. Шестнадцатая — это сервоголовка, работающая только со специализированным диском. Практически во всех накопителях большой емкости используется описанный способ записи сервокодов, благодаря чему его считывание происходит постоянно, независимо от положения головок. Это позволяет добиться максимальной точности позиционирования головок. Существуют также накопители, в которых сочетаются оба метода корректировки положения головок: со встроенными кодами и с выделенным диском. Однако такие “гибриды” встречаются крайне редко.

Как уже отмечалось, современные накопители АТА характеризуются количеством головок и дорожек, каждая из которых разделена на определенное число секторов. Все эти параметры являются преобразованными, т.е. полученными на основе реально существующих физических величин. Опубликованные параметры далеко не всегда позволяют получить представление о точном количестве головок или жестких дисков, существующих в данном накопителе.

 

 



Sitelinkx by eXtro-media.de

Среднее время позиционирования

Это время обычно измеряется в миллисекундах (мс); оно необходимо для перемещения головки от одного цилиндра к другому на какое-либо произвольное расстояние. Один из способов, позволяющих определить эту величину, состоит в многократном выполнении операций поиска случайной дорожки и последующем делении затраченного времени на количество выполненных операций. Этот метод позволяет вычислить среднее время, необходимое для выполнения одной операции поиска дорожки.

Стандартный метод, используемый различными изготовителями для определения среднего времени позиционирования, состоит в измерении времени, затрачиваемого головками для перемещения на расстояние, равное одной трети радиуса всех цилиндров. Среднее время позиционирования зависит непосредственно от конструкции жесткого диска; тип интерфейса или контроллера практически никак не влияет на этот параметр. Величина среднего времени позиционирования говорит, в первую очередь, о возможностях механизма привода головки.


Примечание!

Следует крайне осторожно относиться к результатам эталонных тестов, используемых для определения среднего времени поиска дорожки. В большинстве накопителей ATA используется так называемая схема трансляции секторов, поэтому далеко не все команды, получаемые дисководом на перемещение головки к определенному цилиндру, приводят к ожидаемому физическому движению. Таким образом, выполнение некоторых эталонных тестов для накопителей определенного типа является совершенно бессмысленным. Накопители SCSI также требуют выполнения дополнительной операции, поскольку команды должны быть вначале отправлены накопителю по шине SCSI. Казалось бы, накопители этого типа должны иметь минимальное время доступа, поскольку служебные команды при выполнении эталонных тестов не учитываются. Если же этот фактор учесть, то можно выявить по крайней мере устройства с плохими характеристиками.



Sitelinkx by eXtro-media.de

Автоматическая парковка головок

При выключении питания с помощью контактной парковочной системы (CSS) рычаги с головками опускаются на поверхности дисков. Накопители способны выдержать тысячи “взлетов” и “посадок” головок, но желательно, чтобы они происходили на специально предназначенных для этого участках поверхности дисков, на которых не записываются данные.

При этих “взлетах” и “посадках” происходит износ (абразия) рабочего слоя, так как из-под головок вылетают “клубы пыли”, состоящие из частиц магнитного слоя носителя; если же во время “взлета” или “посадки” произойдет сотрясение накопителя, то вероятность повреждения головок и дисков существенно возрастет. В более современных накопителях, использующих механизм загрузки/разгрузки, непосредственно над внешней поверхностью жестких дисков установлена наклонная пластина, что позволяет избежать контакта между головками и жесткими дисками даже при отключении накопителя. После прекращения подачи напряжения накопитель с механизмом загрузки/разгрузки автоматически “паркует” головки на наклонной пластине.

Одним из преимуществ привода с подвижной катушкой является автоматическая парковка головок. Когда питание включено, головки позиционируются и удерживаются в рабочем положении за счет взаимодействия магнитных полей подвижной катушки и постоянного магнита. При выключении питания поле, удерживающее головки над конкретным цилиндром, исчезает, и они начинают бесконтрольно скользить по поверхностям еще не остановившихся дисков, что может стать причиной повреждений. Для того чтобы предотвратить возможные повреждения накопителя, поворотный блок головок подсоединяется к возвратной пружине. Когда компьютер включен, магнитное взаимодействие обычно превосходит упругость пружины. Но при отключении питания головки под воздействием пружины перемещаются в зону парковки до того, как диски остановятся. По мере уменьшения частоты вращения дисков головки с характерным потрескиванием “приземляются” именно в этой зоне.

Таким образом, чтобы в накопителях с приводом от подвижной катушки привести в действие механизм парковки головок, достаточно просто выключить компьютер; никакие специальные программы для этого не нужны. В случае внезапного отключения питания головки паркуются автоматически.

Подкатегории

Яндекс.Метрика