link0 link1 link2 link3 link4 link5 link6 link7 link8 link9 link10 link11 link12 link13 link14 link15 link16 link17 link18 link19 link20 link21 link22 link23 link24 link25 link26 link27 link28 link29 link30 link31 link32 link33 link34 link35 link36 link37 link38 link39 link40 link41 link42 link43 link44 link45 link46 link47 link48 link49 link50 link51 link52 link53 link54 link55 link56 link57 link58 link59 link60 link61 link62 link63 link64 link65 link66 link67 link68 link69 link70 link71 link72 link73 link74 link75 link76 link77 link78 link79 link80 link81 link82 link83 link84 link85 link86 link87 link88 link89 link90 link91 link92 link93 link94 link95 link96 link97 link98 link99 link100 link101 link102 link103 link104 link105 link106 link107 link108 link109 link110 link111 link112 link113 link114 link115 link116 link117 link118 link119 link120 link121 link122 link123 link124 link125 link126 link127 link128 link129 link130 link131 link132 link133 link134 link135 link136 link137 link138 link139

PersCom — Компьютерная Энциклопедия Компьютерная Энциклопедия

Накопители на жёстких дисках

Основные компоненты жестких дисков

Основные компоненты жестких дисков

Существует множество типов накопителей на жестких дисках, но практически все они состоят из одних и тех же основных узлов. Конструкции этих узлов, а также качество используемых материалов могут различаться, но их основные рабочие характеристики и принципы функционирования одинаковы. Основные элементы конструкции типичного накопителя на жестком диске (см. рисунок ниже) перечислены ниже:

  • диски;
  • головки чтения/записи;
  • механизм привода головок;
  • двигатель привода дисков;
  • печатная плата со схемами управления;
  • кабели и разъемы;
  • элементы конфигурации (перемычки и переключатели).

Диски, двигатель привода дисков, головки и механизм привода головок обычно размещаются в герметичном корпусе, который называется HDA (Head Disk Assembly — блок головок и дисков). Обычно этот блок рассматривается как единый узел; его почти никогда не вскрывают. Прочие узлы, не входящие в блок HDA (печатная плата, лицевая панель, элементы конфигурации и монтажные детали), являются съемными.

Диски

Накопитель на жестких магнитных дисках содержит несколько дисков (пластин). На протяжении многих лет жесткие диски для ПК выпускались в нескольких формфакторах. Как правило, физические размеры жестких дисков выражаются в размере используемых пластин. Основные размеры пластин, используемых в жестких дисках ПК, приведены в таблице.

Существуют также накопители с дисками больших размеров, например 8 дюймов, 14 дюймов и даже больше, но, как правило, эти устройства в ПК не используются. Сейчас в настольных и некоторых портативных моделях чаще всего устанавливаются накопители формата 3,5 дюйма, а малогабаритные устройства (формата 2,5 дюйма и меньше) — в портативных системах.

В большинстве накопителей устанавливается минимум два диска, хотя в некоторых малых моделях бывает и по одному. Количество дисков ограничивается физическими размерами накопителя, а именно — высотой его корпуса. Самое большое количество дисков в накопителях формата 3,5 дюйма, с которым мне приходилось встречаться, — 12.

Раньше почти все диски производились из алюминиево-магниевого сплава, довольно прочного и легкого. Но со временем возникла потребность в накопителях, сочетающих малые размеры и большую емкость. Поэтому в качестве основного материала для дисков стало использоваться стекло, а точнее — композитный материал на основе стекла и керамики. Один из таких материалов называется MemCor и производится компанией Dow Corning. Он значительно прочнее, чем каждый из его компонентов в отдельности. Стеклянные диски отличаются большей прочностью и жесткостью, поэтому их можно сделать в два и более раз тоньше алюминиевых. Кроме того, они менее восприимчивы к перепадам температур, т.е. их размеры при нагреве и охлаждении изменяются весьма незначительно. Сегодня практически все жесткие диски выпускаются со стеклянными или стеклокерамическими пластинами.

Рабочий слой диска

тонким слоем вещества, способного сохранять остаточную намагниченность после воздействия внешнего магнитного поля. Этот слой называется рабочим или магнитным, и именно в нем сохраняется записанная информация. Самыми распространенными являются следующие типы рабочего слоя:

  • оксидный;
  • тонкопленочный;
  • двойной антиферромагнитный (AFC).

Оксидный слой

Оксидный слой представляет собой полимерное покрытие с наполнителем из окиси железа. Он наносится следующим образом. Сначала на поверхность быстро вращающегося алюминиевого диска разбрызгивается суспензия порошка оксида железа в растворе полимера. За счет действия центробежных сил она равномерно растекается по поверхности диска от его центра к внешнему краю. После полимеризации раствора поверхность шлифуется. Затем на нее наносится еще один слой чистого полимера, обладающего достаточной прочностью и низким коэффициентом трения, и диск окончательно полируется. Обычно толщина оксидного слоя — чуть больше 0,1 микрона. Если вам удастся заглянуть внутрь накопителя с такими дисками, то вы увидите, что они коричневого или желтого цвета.

Чем выше емкость накопителя, тем более тонким и гладким должен быть рабочий слой дисков. Но добиться качества покрытия, необходимого для накопителей большой емкости, в рамках традиционной технологии оказалось невозможным. Поскольку оксидный слой довольно мягкий, он крошится при “столкновениях” с головками (например, при случайных сотрясениях накопителя). Диски с таким рабочим слоем использовались с 1955 года; они так долго продержались благодаря простоте технологии и низкой стоимости. Однако в современных моделях накопителей они полностью уступили место тонкопленочным дискам.

Тонкопленочный слой

тия гораздо выше, чем у оксидного. Эта технология легла в основу производства накопителей нового поколения, в которых удалось существенно уменьшить величину зазора между головками и поверхностями дисков, что позволило повысить плотность записи.

Термин тонкопленочный рабочий слой очень удачен, так как это покрытие гораздо тоньше, чем оксидное. Этот слой называют также гальванизированным или напыленным, поскольку наносить тонкую пленку на поверхность дисков можно поразному.

Тонкопленочный гальванизированный рабочий слой получают путем электролиза. Это происходит почти так же, как при хромировании бампера автомобиля. Алюминиевую или стеклянную подложку диска последовательно погружают в ванны с различными растворами, в результате чего она покрывается несколькими слоями металлической пленки. Рабочим слоем служит слой из сплава кобальта толщиной всего около 1 микродюйма (около 0,025 мкм).

Метод напыления рабочего слоя заимствован из полупроводниковой технологии. Суть его сводится к тому, что в специальных вакуумных камерах вещества и сплавы вначале переводятся в газообразное состояние, а затем осаждаются на подложку. На алюминиевый диск сначала наносится слой фосфорита никеля, а затем магнитный кобальтовый сплав. Его толщина при этом — всего 1–2 микродюйма (0,025–0,05 мкм). Аналогично поверх магнитного слоя на диск наносится очень тонкое (порядка 0,025 мкм) углеродное защитное покрытие, обладающее исключительной прочностью. Это самый дорогостоящий процесс из всех описанных выше, так как для его проведения необходимы условия, приближенные к полному вакууму.

Как уже отмечалось, толщина магнитного слоя, полученного методом напыления, составляет около 0,025 мкм. Его исключительно гладкая поверхность позволяет сделать зазор между головками и поверхностями дисков гораздо меньшим, чем это было возможно раньше (0,076 мкм). Чем ближе к поверхности рабочего слоя располагается головка, тем выше плотность расположения зон смены знака на дорожке записи и, следовательно, плотность диска. Кроме того, при увеличении напряженности магнитного поля по мере приближения головки к магнитному слою увеличивается амплитуда сигнала; в результате соотношение “сигнал– шум” становится более благоприятным.

И при гальваническом осаждении, и при напылении рабочий слой получается очень тонким и прочным. Поэтому вероятность “выживания” головок и дисков в случае их контакта друг с другом на большой скорости существенно повышается. И действительно, современные накопители с дисками, имеющими тонкопленочные рабочие слои, практически не выходят из строя при вибрациях и сотрясениях. Оксидные покрытия в этом отношении гораздо менее надежны. Если бы вы смогли заглянуть внутрь корпуса накопителя, то увидели бы, что тонкопленочные покрытия дисков напоминают серебристую поверхность зеркал.

Двойной антиферромагнитный слой

Последним достижением в технологии изготовления носителей жестких дисков является использование двойных антиферромагнитных слоев (AFC), позволяющих существенно увеличить плотность рабочего слоя, превысив наложенные ранее ограничения. Увеличение плотности материала дает возможность уменьшить толщину магнитного слоя диска. Плотность записи жестких дисков (которая выражается в количестве дорожек на дюйм или в числе битов на дюйм) достигла той точки, в которой кристаллы магнитного слоя, используемые для хранения данных, становятся настолько малы, что это приводит к их нестабильности и как следствие — к низкой надежности запоминающего устройства. Границы плотности, получившие название суперпарамагнитного ограничения, должны находиться в пределах 30– 50 Гбит/дюйм2. С развитием технологии этот предел был преодолен и достиг 100 Гбит/дюйм2. Предполагается, что в будущем удастся достигнуть и поверхностной плотности записи в 200 Гбит/дюйм2, правда, при этом будут задействованы некоторые новые технологии.

Носители AFC состоят из двух магнитных слоев, разделенных исключительно тонкой пленкой металлического рутения, толщина которой — всего 3 атома (6 ангстрем). Подобная многослойная конструкция образует антиферромагнитное соединение, состоящее из верхнего и нижнего магнитных слоев, что позволяет различать эти слои по всей видимой высоте жесткого диска. Такая конструкция дает возможность использовать физически более толстые магнитные слои, имеющие более устойчивые кристаллы большого размера, благодаря чему носители могут функционировать как одинарный слой, отличающийся гораздо меньшей общей толщиной.

В 2001 году IBM использовала технологию AFC при создании целой серии 2,5-дюймовых накопителей Travelstar 30GN для портативных компьютеров; жесткие диски этого типа стали первыми накопителями с рабочим слоем AFC, появившимися на рынке. Кроме того, IBM начала создавать 3,5-дюймовые накопители с рабочим слоем AFC, используемые в настольных компьютерах. Первым накопителем этого типа стал Deskstar 120 GXP. Сегодня носители AFC выпускаются компанией Hitachi Global Storage Technologies, которая поглотила подразделение жестких дисков компании IBM, а также ряд других крупных производителей этого типа носителей. Технология AFC позволяет преодолеть рубеж плотности в 100 Гбит/дюйм2, а в сочетании с перпендикулярной магнитной записью (PMR) отодвинуть его до 200 Гбит/дюйм2. Внешне носитель с покрытием AFC выглядит, как зеркало.

Головки чтения/записи

В накопителях на жестких дисках для каждой из сторон каждого диска предусмотрена собственная головка чтения/записи. Все головки смонтированы на общем подвижном каркасе и перемещаются одновременно.

Конструкция каркаса с головками довольно проста. Каждая головка установлена на конце рычага, закрепленного на пружине и слегка прижимающего ее к диску. Мало кто знает о том, что диск как бы зажат между парой головок (сверху и снизу). И если бы это не повлекло за собой никаких последствий, можно было бы провести небольшой эксперимент: открыть накопитель и приподнять пальцем верхнюю головку. Как только бы вы ее отпустили, она вернулась бы в первоначальное положение (то же самое произошло бы и с нижней головкой).

На рисунке показана стандартная конструкция механизма привода головок с подвижной катушкой.

Головки чтения/записи и поворотный привод с подвижной катушкой

Когда накопитель выключен, головки касаются дисков под действием пружин. При раскручивании дисков аэродинамическое давление под головками повышается, и они отрываются от рабочих поверхностей (“взлетают”). Когда диск вращается на полной скорости, зазор между ним и головками может составлять 0,5–5 микродюймов и даже больше.

В начале 1960-х годов величина зазора между диском и головками составляла 200–300 микродюймов; в современных накопителях она достигает 10 нм, или 0,4 микродюйма. Для обеспечения повышенной плотности записи в будущем физическое расстояние между головкой и дисковой пластиной будет продолжать уменьшаться; возможно, такие головки даже будут входить в прямой контакт с поверхностью диска. Естественно, для этого потребуются новые конструкции носителей и головок.


Внимание!

Общая тенденция такова: чем раньше был выпущен накопитель и чем меньше его емкость, тем больше зазор между головками и поверхностями дисков. Именно из-за малого размера этого зазора блок HDA можно вскрывать только в абсолютно чистых помещениях: любая пылинка, попавшая в зазор, может привести к ошибкам при считывании данных и даже к столкновению головок с дисками на полном ходу. В последнем случае может быть повреждена или головка, или диск, что одинаково неприятно.

Именно поэтому сборка блоков HDA выполняется только в чистых помещениях, соответствующих требованиям класса 100 (или даже более высоким). Это означает, что в одном кубическом футе воздуха может присутствовать не более 100 пылинок размером до 0,5 мкм. Для сравнения: стоящий неподвижно человек каждую минуту выдыхает порядка 500 таких частиц! Поэтому помещения оснащаются специальными системами фильтрации и очистки воздуха. Блоки HDA можно вскрывать только в таких условиях.

Поддержка столь стерильных условий стоит немалых денег. Некоторые фирмы выпускают “чистые цеха” в настольном исполнении. Стоят они всего несколько тысяч долларов и выглядят, как большие ящики с прозрачными стенками, в которые вмонтированы перчатки для оператора. Прежде чем приступить к работе, оператор должен вставить в ящик устройство и все необходимые инструменты, затем закрыть ящик и включить систему фильтрации. Через
некоторое время можно будет начинать разборку и прочие операции с накопителем. Существуют и другие способы создания стерильных условий. Представьте себе, например, монтажный стол, отгороженный от окружающего пространства воздушной завесой, причем непосредственно на рабочее место под давлением постоянно подается очищенный воздух.

Это напоминает устанавливаемые на зиму в дверях магазинов “занавески” из горячего воздуха, которые не мешают покупателям, но и не позволяют теплу из помещения выйти наружу. Поскольку подобное оборудование стоит довольно дорого, за ремонт накопителей на жестких дисках обычно берутся только их производители.

Конструкции головок чтения/записи!
По мере развития технологии производства дисковых накопителей совершенствовались и конструкции головок чтения/записи. Первые головки представляли собой сердечники с обмоткой (электромагниты). По современным меркам их размеры были огромными, а плотность записи — чрезвычайно низкой. За прошедшие годы конструкции головок прошли долгий путь развития от первых головок с ферритовыми сердечниками до современных гигантских магниторезистивных моделей. Более подробно о различных конструкциях головок можно узнать из главы 8.

Механизмы привода головок

Пожалуй, еще более важной деталью накопителя, чем сами головки, является механизм, который устанавливает их в нужное положение; он называется приводом головок. Именно с его помощью головки перемещаются от центра к краям диска и устанавливаются на заданный цилиндр. Существует много конструкций механизмов привода головок, но их можно разделить на два основных типа:

Тип привода во многом определяет быстродействие и надежность накопителя, достоверность считывания данных, его температурную стабильность, чувствительность к выбору рабочего положения и вибрациям. Скажем сразу, что накопители с приводами на основе шаговых двигателей гораздо менее надежны, чем устройства с приводами от подвижных катушек.

Привод — самая важная деталь накопителя. В таблице показана зависимость характеристик накопителя на жестких дисках от конкретного типа привода.

Приводы с шаговым двигателем обычно использовались на жестких дисках емкостью до 100 Мбайт и менее, которые создавались в 1980-х и в начале 1990-х годов. Во всех накопителях, имеющих более высокую емкость, обычно используются приводы с подвижной катушкой. В накопителях на гибких дисках для перемещения головок используется привод с шаговым двигателем. Его параметров (в том числе и точности) вполне достаточно для дисководов этого типа, поскольку плотность дорожек записи на гибких дисках значительно ниже (135 дорожек на дюйм), чем в накопителях на жестких дисках (более 5000 дорожек на дюйм). большинстве выпускаемых сегодня накопителей устанавливаются приводы с подвижными катушками.

Привод с шаговым двигателем

Шаговый двигатель — это электродвигатель, ротор которого может поворачиваться только ступенчато, т.е. на строго определенный угол. Если покрутить его вал вручную, то можно услышать негромкие щелчки (или треск при быстром вращении), которые возникают всякий раз, когда ротор проходит очередное фиксированное положение.

Шаговые двигатели могут устанавливаться только в фиксированных положениях. Размеры этих двигателей невелики (порядка нескольких сантиметров), а форма может быть прямоугольной, цилиндрической и т.д. Шаговый двигатель устанавливается вне блока HDA, но его вал проходит внутрь через отверстие с герметизирующей прокладкой. Обычно двигатель располагается у одного из углов корпуса накопителя, и его можно легко узнать.

Одна из самых серьезных проблем механизма с шаговым двигателем — нестабильность температуры. При нагреве и охлаждении диски расширяются и сжимаются, в результате чего дорожки смещаются относительно своих прежних положений. Поскольку механизм привода головок не позволяет сдвинуть их на расстояние, меньшее одного шага (переход на одну дорожку), компенсировать погрешности температур невозможно. Головки перемещаются в соответствии с поданным на шаговый двигатель количеством импульсов.

Привод с шаговым двигателем показан на рисунке.

Привод с шаговым двигателем