link0 link1 link2 link3 link4 link5 link6 link7 link8 link9 link10 link11 link12 link13 link14 link15 link16 link17 link18 link19 link20 link21 link22 link23 link24 link25 link26 link27 link28 link29 link30 link31 link32 link33 link34 link35 link36 link37 link38 link39 link40 link41 link42 link43 link44 link45 link46 link47 link48 link49 link50 link51 link52 link53 link54 link55 link56 link57 link58 link59 link60 link61 link62 link63 link64 link65 link66 link67 link68 link69 link70 link71 link72 link73 link74 link75 link76 link77 link78 link79 link80 link81 link82 link83 link84 link85 link86 link87 link88 link89 link90 link91 link92 link93 link94 link95 link96 link97 link98 link99 link100 link101 link102 link103 link104 link105 link106 link107 link108 link109 link110 link111 link112 link113 link114 link115 link116 link117 link118 link119 link120 link121 link122 link123 link124 link125 link126 link127 link128 link129 link130 link131 link132 link133 link134 link135 link136 link137 link138 link139

PersCom — Компьютерная Энциклопедия Компьютерная Энциклопедия

Память. Нижний уровень

Основная память. ОЗУ. Блочная организация основной памяти

Основная память представляет собой единственный вид памяти, к которой ЦП может обращаться непосредственно. Основную память образуют запоминающие устройства с произвольным доступом. Каждая ячейка имеет уникальный адрес, позволяющий различать ячейки при обращении к ним для выполнения операций записи и считывания. Основная память может включать в себя два типа устройств: оперативные запоминающие устройства (ОЗУ) и постоянные запоминающие устройства (ПЗУ).

Преимущественную долю основной памяти образует ОЗУ, называемое оперативным, потому что оно допускает как запись, так и считывание информации, причем обе операции выполняются однотипно, практически с одной и той же скоростью. В англоязычной литературе ОЗУ соответствует аббревиатура RAM — Random Access Memory. Для большинства типов полупроводниковых ОЗУ характерна энергозависимость: даже при кратковременном прерывании питания хранимая информация теряется. Микросхема ОЗУ должна быть постоянно подключена к источнику питания и поэтому может использоваться только как временная память. Вторую группу полупроводниковых ЗУ основной памяти образуют энергонезависимые микросхемы ПЗУ (ROM — Read-Only Меmоrу). ПЗУ обеспечивает считывание информации, но не допускает ее изменения (в ряде случаев информация в ПЗУ может быть изменена, но этот процесс сильно отличается от считывания и требует значительно большего времени). Энергозависимые ОЗУ можно подразделить на две основные подгруппы: динамическую память (DRAM — Dynamic Rаndоm Access Меmory) и статическую память (SRAM — Static Rаndоm Access Меmory). В статических ОЗУ запоминающий элемент может хранить записанную информацию неограниченно долго (при наличии питающего напряжения). Запоминающий элемент динамического ОЗУ способен хранить информацию только в течение достаточно короткого промежутка времени, после которого информацию нужно восстанавливать заново, иначе она будет потеряна. Динамические ЗУ, как и статические, энергозависимы. Роль запоминающего элемента в статическом ОЗУ исполняет триггер. Taкой триггер представляет собой схему с двумя устойчивыми состояниями, обычно состоящую из четырех или шести транзисторов(см. рисунок ниже)

Схема элемента статического ЗУ

Запоминающий элемент (ЗЭ) динамической памяти значительно проще. Он состоит из одного конденсатора и запирающего транзистора (см. рисунок ниже). Простота схемы позволяет достичь высокой плотности размещения, в итоге, снизить стоимость. Главный недостаток подобной технологии связан с тем, что накапливаемый на конденсаторе заряд со временем теряется. Среднее время утечки заряда ЗЭ динамической памяти составляет сотни или даже десятки миллисекунд, поэтому, заряд необходимо успеть восстановить в течение данного отрезка времени, иначе информация будет утеряна. Периодическое восстановление заряда ЗЭ называется регенерацией и осуществляется каждые 2-10 мс.

Схема элемента динамического ЗУ

 

Адресное пространство памяти разбито на группы последовательных адресов. Каждая такая группа обеспечивается отдельным банком памяти. Для обращения используется 9-разрядный адрес, семь младших разрядов которого (А6 — А0) поступают параллельно на все банки памяти и выбирают в каждом из них одну ячейку. Два старших разряда адреса (А8, А7) содержат номер банка. Выбор банка обеспечивается либо с помощью дешифратора номера банка памяти, либо путем мультиплексирования информации (см. рисунок ниже, иллюстрирует оба варианта). В функциональном отношении такая ОП может рассматриваться как единое ЗУ, емкость которого равна суммарной емкости отдельных банков, а быстродействие — быстродействию отдельного банка.