PersCom — Компьютерная Энциклопедия Компьютерная Энциклопедия

USB

USB

Структуры данных и регистры контроллера UHC

Драйвер в системной памяти создает список кадров Frame List, состоящий из 1024 элементов. Каждый элемент этого списка содержит 32-битный указатель на связанный список структур данных, по которым контроллер выполняет транзакции в данном кадре. Хост-контроллер имеет регистр базового адреса списка кадров, указывающий на начало списка. Текущий номер отрабатываемого элемента определяется десятью младшими битами счетчика кадров, находящегося в контроллере и инкрементируемого каждую миллисекунду. Период счета кадров можно немного варьировать, изменяя константу, занесенную в регистр модификации длительности кадра (SOF Modify Register), что обеспечивает возможность подстройки частоты кадров для синхронизации изохронных обменов.

Элемент списка кадров может указывать либо на дескриптор изохронной передачи TD (Transfer Descriptor), либо (если в данном кадре изохронный обмен не планируется) на заголовок очереди QH (Queue Head). Если в данном кадре вообще не планируются передачи, то в элементе устанавливается признак-«заглушка» T (Terminate, конец связанного списка, в данном случае — пустого). Еще раз напомним, что здесь слово «передача» (Transfer, согласно спецификации UHCI) употребляется в узком смысле — она соответствует одной транзакции (передаче не более одного пакета данных). Элемент (32-битное слово) имеет формат, приведенный на рисунке ниже. Поле FLLP (Frame List Link Pointer) — указатель на элемент; бит T — признак последнего элемента (при T = 1 указатель FLLP недействителен). Бит Q задает класс связанного элемента, на который указывает FLLP (0 — TD, 1 — QH).

Для каждого кадра из списка устанавливается своя цепочка дескрипторов изохронных передач (возможно и пустая), последний из этой цепочки должен ссылаться на цепочку заголовков очередей. Цепочки заголовков QH могут быть общими для группы кадров или даже для всех кадров списка. Общая идея построения очередей состоит в том, чтобы создавать свою очередь для каждого установленного канала (для всех сконфигурированных точек, кроме изохронных). «Дежурный» метод обслуживания — по горизонтали, тогда после выполнения транзакции с одной точкой контроллер перейдет к другой точке (другой очереди). Связывание TD и QH через указатели позволяет формировать произвольные конфигурации переходов от одной очереди к другой и даже делать петли — в последнем случае возможно, что с одной точкой в кадре успеют пройти несколько транзакций. Однако это нетипичный способ планирования. Если очередей много (установлено много каналов), то они распределяются по кадрам (из 1024-элементного списка) так, чтобы цепочка каждого кадра обязательно прошла по горизонтали до конца. Это можно спланировать, поскольку максимальное время для отработки одного элемента каждой очереди (как и изохронных транзакций) заранее известно (оно определяется типом передачи, максимальным размером пакета и скоростью устройства, что известно системе USB). При необходимости «горизонтальную справедливость» можно нарушить, задав вертикальный порядок обслуживания, — контроллер, успешно обработав из очереди передачу с признаком V = 1, перейдет к следующему дескриптору из этой же очереди, а не к следующей очереди.

Дескрипторы передач и заголовки очередей размещаются драйвером в ОЗУ по адресам, выровненным по границе параграфа, поскольку в качестве указателей используются лишь старшие 28 бит (биты [3:0] используются для служебных признаков).

Дескриптор передачи (TD) состоит из 32 байтов, из которых хост-контроллер использует только первые четыре 32-битных слова DW0–DW3. Слова DW4–DW7 зарезервированы для использования драйвером UHC (для организации «сборки мусора» — повторного использования отработанных областей). Формат дескриптора передачи приведен на рисунке ниже. Серым цветом выделены поля, модифицируемые хост-контроллером.

В слове DW0 поле Link Pointer аналогично полю FLLP, а биты T и Q аналогичны одноименным битам элемента списка кадров. Бит V — метод обслуживания TD (1 — в глубину, 0 — в ширину).

Слово DW1 используется для управления и определения состояния выполнения передачи, модифицируется хост-контроллером. Поле ActLen — действительная длина переданных данных; поле Status — состояние выполнения передачи:

длина переданных данных; поле Status — состояние выполнения передачи:

  • бит 23: Active — «надо исполнять», устанавливается драйвером, сбрасывается контроллером по успешному исполнению или исчерпанию лимита повторов;
  • бит 22: Stalled — точка ответила пакетом STALL;
  • бит 21: Data Buffer Error — ошибка буфера данных (переполнение или переопустошение FIFO при выполнении транзакции), транзакция остается активной (при переопустрошении контроллер генерирует пакет с ошибочным CRC, при переполнении не отвечает подтверждением);
  • бит 20: Babble — при выполнении данной транзакции обнаружена «болтливость» устройства (оно отключается и устанавливается бит Stalled);
  • бит 19: NAK — получение соответствующего ответа (в транзакции SETUP получение NAK устанавливает и признак ошибки тайм-аута);
  • бит 18: CRC/Time Out Error — обнаружена ошибка передачи (CRC или таймаут);
  • бит 17: Bitstuff Error — обнаружена ошибка вставки бит.

Биты [24:31] используются для управления передачей. Бит IOC заказывает прерывание по исполнению (прерывание генерируется в конце кадра, даже если транзакция уже неактивна, выборка ее дескриптора вызовет прерывание). Бит ISO — признак изохронной передачи (указание не делать повторных попыток). Бит LS — признак LS-устройства, использовать преамбулу перед передачей. Поле C_ERR — счетчик повторных попыток, декрементируемый по каждой ошибке. Переход в 1 или 0 вызывает перевод дескриптора в неактивное состояние. Если драйвер устанавливает нулевое значение, то число повторов неограниченно. Бит SPD — детектор короткого пакета: если в транзакции IN, стоящей в очереди, успешно принято меньше данных, чем ожидалось, то в конце кадра вырабатывается условие прерывания.

В слове DW2 содержится информация для выполнения транзакции: Packet ID — тип используемого маркера IN (69h), OUT (E1h) или SETUP (2Dh); Device Address— адрес устройства USB; EndPt — номер и направление конечной точки. Бит D (Data Toggle) — состояние переключателя для передаваемого или посылаемого пакета. Поле MaxLength — длина передаваемых данных (максимальная длина принимаемых), 000 — 1 байт, 001 — 2, 3FF — 1024; 7FFh — 0 (пустой пакет). Допустимые значения до 4FFh — 1280 байт, теоретический предел емкости кадра. Значения 500–7FEh недопустимы, вызывают фатальную ошибку контроллера.

В слове DW3 содержится Buffer Pointer — указатель на буфер в ОЗУ, используемый для данных этой передачи.

Заголовок очереди (QH) связывает очереди друг с другом (по горизонтали) и ссылается на первый элемент (TD) данной очереди. Хост-контроллер использует два 32-битных слова (см. следующий рисунок). В поле QHLP (Queue Head Link Pointer) содержится указатель на следующий заголовок очереди (горизонтальная связка). В поле QELP (Queue Element Link Pointer) содержится указатель на элемент очереди (вертикальная связка). Признаки последнего элемента (T) и класс связанного элемента (Q) аналогичны одноименным признакам и классам в вышеприведенных структурах.

Дескриптор заголовка очереди создается драйвером; хост-контроллер модифицирует в памяти указатель QELP: успешно отработав транзакцию, контроллер берет из DW0 ее дескриптора указатель на следующий элемент и помещает его на место QELP в заголовке очереди. Таким образом, успешно отработанный TD удаляется из очереди. Когда удаляется последний TD, в QELP устанавливается признак пустой очереди (T). В случае неисправимой ошибки при отработке какого-то дескриптора в QELP также устанавливается «заглушка» T — поток с гарантированной доставкой не позволяет пропустить какую-либо транзакцию. Поле QELP может ссылаться как на TD (тривиальный вариант планирования), так и на QH — очередь сама может содержать очереди.

Регистровая модель UHC поясняется в таблице ниже, где представлены регистры, отображенные на пространство ввода/вывода. Кроме того, как всякое устройство PCI, контроллер UHC имеет регистры в конфигурационном пространстве, в которых, в частности, задаются коды класса (0Ch — контроллер последовательной шины), подкласса (03 — USB) и программного интерфейса (00) в классификации PCI SIG.

Таблица. Регистры контроллера UHC

Адрес Назначение
Base + (00–01h)

USBCMD — регистр команд USB

Биты 15:8 — резерв
Бит 7: MAXP (Max Packet) — допустимый размер пакета (для FS), с которым
возможна транзакция при подходе к концу кадра: 1 = 64 байт, 0 = 32 байта

Бит 6: CF (Configure Flag) — флаг, которым драйвер отмечает окончание процесса
конфигурирования контроллера (программный семафор для ПО)
Бит 5: SWDBG (Software Debug) — управление отладкой: 1=режим отладки (останов
после каждой транзакции), 0 — нормальный
Бит 4: FGR (Force Global Resume) — подача сигнала глобального
пробуждения.Устанавливается программно, сбрасывается аппаратно по окончании
пробуждения
Бит 3: EGSM (Enter Global Suspend Mode) — перевод в режим глобальной
приостановки
Бит 2: GRESET (Global Reset) — общий сброс контроллера и шины USB
Бит 1: HCRESET (Host Controller Reset) — сброс хост-контроллера
Бит 0 RS (Run/Stop) управление работой контроллера: 1=Run — выполнение
транзакций по плану, 0=Stop — останов

Base + (02–03h)

USBSTS — регистр состояния USB

Биты [15:6] — резерв
Бит 5: HCHalted — контроллер остановлен, программно или аппаратно (по ошибке
или при отладке)
Бит 4: Host Controller Process Error — фатальная ошибка исполнения (может
возникать и из-за некорректного задания PID в дескрипторе транзакций), вызывает
прерывание
Бит 3: Host System Error — системная ошибка (неполадки в интерфейсе PCI),
вызывает прерывание
Бит 2: Resume Detect — получение сигнала возобновления (при глобальной
приостановке)
Бит 1: USB Error Interrupt — признак прерывания по ошибке выполнения
транзакции (переполнение или переопустошение FIFO буфера шины PCI)
Бит 0: USBINT (USB Interrupt) — прерывание по выполнению транзакции
с установленным битом IOC или приему короткого пакета (при включенном
обнаружении короткого пакета)

Base + (04–05h)

USBINTR — регистр разрешения прерываний

Биты [15:4] — резерв
Бит 3: Short Packet Interrupt Enable — разрешение прерываний по приему
короткого пакета
Бит 2: IOC (Interrupt On Complete Enable) — разрешение прерываний по завершении
транзакции
Бит 1: Resume Interrupt Enable — разрешение прерываний по приему сигнала
возобновления
Бит 0: Timeout/CRC Interrupt Enable — разрешение прерываний по ошибке
тайм-аута и CRC-контролю

Base + (06–07h) FRNUM — регистр номера кадра
Base + (08–0Bh) FRBASEADD — регистр базового адреса списка кадров
Base + 0Ch

SOFMOD — регистр управления частотой кадров

Биты [6:0] — управление длительностью кадра: 0 — 11936 бит, 1 — 11937 бит, …
63 — 11999 бит, 64 — 12000 бит (номинал), 65 — 12001 бит, 127 — 12063 бит

Base + (10–11h)

PORTSC1 — регистр управления и состояния порта 1

Биты [15:13] — резерв (0)
Бит 12: (R/W) Suspend — приостановка порта
Биты [11:10] — резерв (0)
Бит 9: (R/W) Port Reset — сброс порта

Бит 8: (RO) Low Speed Device Attached — признак подключения LS-устройства
Бит 7 — резерв (1)
Бит 6: (RW) Resume Detect — обнаружение сигнала возобновления. Запись «1»
вызывает генерацию сигнала возобновления на порте, последующая запись
«0» — завершение сигнала возобновления и посылка LS-EOP Биты [5:4]: (RO) —
текущее состояние линий D- и D+
Бит 3: (R/WC) Port Enable/Disable Change — признак автоматического запрета
порта по ошибке, сбрасывается записью «1»
Бит 2: (R/W) Port Enabled/Disabled — разрешение работы порта
Бит 1: (R/WC) Connect Status Change — признак события подключения/
отключения устройства
Бит 0: (RO) Current Connect Status — признак подключенного устройства

Base + (12–13h) PORTSC2 — регистр управления и состояния порта 2 (аналогично предыдущему)


Устройства человеко-машинного интерфейса (HID-устройства)

К классу HID (Human Interface Device) относятся устройства, обеспечивающие интерфейс между человеком и компьютером:

  • клавиатура, мышь, шар, другие устройства-указатели, джойстик;
  • органы управления на лицевой панели компьютера — кнопки, переключатели, регуляторы и т. п.;
  • органы управления, присущие пультам дистанционного управления аудио- и видеотехникой, телефонам, различным игровым симуляторам (рули, педали, штурвалы и т. п.).

Для этих устройств характерен небольшой объем передаваемых данных, возникающих для компьютера спонтанно (асинхронно), и умеренные требования к задержке обслуживания. К данному классу относятся и иные устройства с похожим характером данных (считыватели штрихкода, термометры, вольтметры и т. п.). Подробно данный класс описан в документе Device Class Definition for Human Interface Devices (HID), в 2001 году вышла его версия 1.11. Класс HID допускает работу устройств на любой скорости шины USB.

Деление на подклассы учитывает только необходимость поддержки данного устройства на этапе загрузки. Специальный код протокола выделяет только клавиатуру и мышь — стандартные устройства ввода.

С HID-устройствами хост обменивается сообщениями-рапортами (report), которые могут быть трех типов (Report Type):

  • тип 1 — ввод (Input) от устройства;
  • тип 2 — вывод (Output) в устройство;
  • тип 3 — управление свойствами (Feature).

Если устройство способно обмениваться разнообразными (не по типу, а по назначению) рапортами, то каждый рапорт начинается с байта идентификатора рапорта (Reprt ID). Например, комбинация клавиатуры с указателем может давать как рапорты нажатий клавиш, так и рапорты устройства-указателя.

Интерфейс HID-устройства обеспечивает двунаправленный обмен рапортами между устройством и драйвером. В нем имеется:

  • обязательный двунаправленный канал (через EP0) для вывода рапортов и ввода по опросу (полинг);
  • обязательный однонаправленный канал асинхронного ввода рапортов по прерываниям (от устройства к его драйверу через точку Interrupt-IN);
  • необязательный канал вывода по прерываниям; если у устройства имеется точка Interrupt-OUT, то выводные рапорты передаются по ней.

HID-устройства имеют специальный классовый HID-дескриптор, ссылающийся на дескриптор рапортов и набор физических дескрипторов (указываются тип и длина этих дескрипторов, что позволяет получить их по запросу Get_Descriptor).

Дескриптор рапорта представляет собой сложную структуру, описывающую передаваемые данные: назначение (ввод, вывод или управление свойствами), использование, диапазон допустимых значений, размер… Эта информация нужна драйверу HID-устройств, разбирающему (и собирающему) рапорты. Драйвер содержит модуль Item Parser, разбирающий, какому приложению следует передать тот или иной рапорт. Без должного дескриптора рапорта приложение рапорт ни принять, ни послать не сможет.

Набор физических дескрипторов описывает, какой частью тела человек воздействует на тот или иной орган управления. Эти дескрипторы необязательны и сообщаются не многими устройствами; они вносят дополнительные сложности в описание, хотя позволяют приложениям точнее использовать те или иные органы.

HID-устройства поддерживают все стандартные запросы к устройствам и специфические запросы, приведенные в таблице.

Таблица. Классовые запросы к HID-устройствам

Запрос bmRequestType bRequest
Get_Report 10100001 01
Get_Idle 10100001 02
Get_Protocol 10100001 03
Set_Report 00100001 09
Set_Idle 00100001 0A
Set_Protocol 00100001 0B

Запросы Get_Report и Set_Report служат для приема и передачи рапортов через EP0. Здесь в поле wValue старший байт задает тип рапорта, младший — его идентификатор. В поле wIndex задается номер интерфейса, поле wLength задает длину рапорта, который передается в фазе данных.

Запрос Set_Idle позволяет управлять подачей рапортов по каналу прерываний в случае отсутствия изменений состояния рапортуемых величин. Здесь в поле wValue старший байт задает длительность молчания в покое (idle duration), младший — идентификатор рапорта. В поле wIndex задается номер интерфейса, поле wLength = 0 (фаза данных отсутствует). Если задана нулевая длительность, то устройство будет передавать рапорты только в случае изменений состояния (что требуется, например, для клавиатуры). Ненулевое значение трактуется как длительность интервала (в 4-миллисекундных единицах), в течение которого точка Interrupt-IN отвечает на опросы NAK’ами, если нет изменений состояния. Так, например, можно уменьшить поток «пустых» данных опроса устройств-указателей (мыши или джойстика), не теряя быстроты реакции на события (задаваемая длительность и bInterval, задающий частоту опроса точки Interrupt-IN, независимы).

Запрос Get_Idle позволяет считать текущее значение длительности для рапорта, идентификатор которого задан в младшем байте поля wValue. В поле wIndex задается номер интерфейса, поле wLength = 1 (принимается один байт данных).

Запрос Set_Protocol (только для устройств, участвующих в начальной загрузке) позволяет переключать протокол работы устройства. Тип протокола задается в поле wValue: 0 — протокол (упрощенный), используемый при загрузке (Boot Protocol); 1 — нормальный протокол рапортов (Report Protocol). В поле wIndex задается номер интерфейса, поле wLength = 0.

Запрос Get_Protocol позволяет определить текущий протокол. В поле wIndex задается номер интерфейса, поле wLength=1 (принимается один байт данных).



Кадры и микрокадры

Хост организует обмены с устройствами согласно своему плану распределения ресурсов. Для этого хост-контроллер циклически с периодом 1 мс формирует кадры (frames), в которые укладываются все запланированные транзакции (cм. рисунок ниже). Каждый кадр начинается с посылки пакета-маркера SOF (Start Of Frame), который является синхронизирующим сигналом для изохронных устройств, а также для хабов. Кадры нумеруются последовательно, в маркере SOF передаются 11 младших бит номера кадра. В режиме HS каждый кадр делится на 8 микрокадров, и пакеты SOF передаются в начале каждого микрокадра (с периодом 125 мкс). При этом во всех восьми микрокадрах SOF несет один и тот же номер кадра; новое значение номера кадра передается в нулевом микрокадре. В каждом микрокадре может быть выполнено несколько транзакций, их допустимое число зависит от скорости, длины поля данных каждой из них, а также от задержек, вносимых кабелями, хабами и устройствами. Все транзакции кадров должны быть завершены до начала интервала времени EOF (End of Frame). Период (частота) генерации микрокадров может немного варьироваться с помощью специального регистра хост-контроллера, что позволяет подстраивать частоту для изохронных передач.

Кадрирование используется и для обеспечения живучести шины. В конце каждого микрокадра выделяется интервал времени EOF (End Of Frame), на время которого хабы запрещают передачу по направлению к контроллеру. Если хаб обнаружит, что с какого-то порта в это время ведется передача данных (к хосту), этот порт отключается, изолируя «болтливое» устройство, о чем информируется USBD.

Счетчик микрокадров в хост-контроллере используется как источник индекса при обращении к таблице дескрипторов кадров. Обычно драйвер USB составляет таблицу дескрипторов для 1024 последовательных кадров1, к которой он обращается циклически. С помощью этих дескрипторов хост планирует загрузку кадров так, чтобы кроме запланированных изохронных транзакций и прерываний в них всегда находилось место для транзакций управления. Свободное время кадров может заполняться передачами массивов. Спецификация USB позволяет занимать под периодические транзакции (изохронные и прерывания) до 90% пропускной способности шины, то есть времени в каждом микрокадре.



Транзакции изохронных передач

Изохронные транзакции обеспечивают гарантированную скорость обмена, но не обеспечивают надежности доставки. По этой причине в протоколе отсутствуют подтверждения, поскольку повтор пакета приведет к сбою в планах доставки данных. Управление потоком, основанное на подтверждениях, отсутствует — устройство обязано выдерживать темп обмена, заявленный в дескрипторе изохронной конечной точки.

Транзакции изохронного вывода состоят из двух пакетов, посылаемых хост-контроллером, — маркера OUT и пакета данных DATA. В транзакции ввода хост посылает маркер IN, на который устройство отвечает пакетом данных, возможно, и с нулевой длиной поля данных (если нет готовых данных). Любой другой ответ устройства (как и «молчание») хостом расценивается как ошибка, приводящая к остановке данного канала.

При изохронном обмене имеется контроль достоверности (отбрасывание пакетов с ошибками) и целостности данных (обнаружение факта пропажи пакета). Контроль целостности основан на строгой детерминированности темпа обмена — в соответствии со своим дескриптором точка ожидает транзакцию с периодом 2bInterval–1 микрокадров. Для обычной изохронной конечной точки в микрокадре возможна лишь одна транзакция, и ошибка при приеме пакета выражается в отсутствии принятых данных в микрокадре, в котором они ожидаются. Таким образом, нумерация пакетов (переключатель Toggle Bit) не требуется. Полноскоростные устройства и хостконтроллеры должны посылать пакеты только типа DATA01. Для широкополосных изохронных конечных точек (USB 2.0) в каждом микрокадре возможна передача до трех пакетов данных. Любой из этих пакетов может потеряться, и для обнаружения этой ситуации требуется нумерация пакетов внутри микрокадра. Для этой нумерации введено два новых типа пакетов данных: DATA2 и MDATA. Многообразие типов пакетов кроме нумерации позволяет еще и информировать партнера по связи о своих планах на данный микрокадр. В транзакциях IN идентификатором пакета устройство указывает, сколько еще пакетов оно собирается выдать в том же микрокадре, что позволяет хосту не делать лишних попыток ввода. Так, если в микрокадре передается один пакет, то это будет DATA0; если два — последовательность будет DATA1, DATA0; три — DATA2, DATA1, DATA0. В транзакциях OUT для вывода не последнего пакета в микрокадре используется пакет MDATA (More Data), а идентификатор последнего пакета показывает, сколько было до него передано пакетов. Так, при одной транзакции вывода используется пакет DATA0, при двух — последовательность MDATA, DATA1, при трех — MDATA, MDATA, DATA2. Во всех транзакциях, кроме последней в микрокадре, должны использоваться пакеты максимального размера. Отметим, что между широкополосными транзакциями в микрокадре могут вклиниваться другие транзакции.



Специальная сигнализация: обнаружение подключения-отключения, сброс устройств, приостановка и пробуждение

Хаб обнаруживает подключение устройства по уровням напряжения на линиях D+ и D–:

  • при отключенном устройстве на линиях D+ и D- уровни сигнала низкие (состояние SE0), что обусловлено резисторами Rd1 и Rd2 хаба;
  • при подключении LS-устройства повышается уровень сигнала D- за счет резистора Rul в устройстве (переход в состояние LS-Idle);
  • при подключении FS/HS-устройства повышается уровень сигнала D+ за счет резистора Rul в устройстве (переход в состояние FS-Idle).

Последовательность обнаружения подключения и сброса устройств FS и LS приведена на рисунках а и б соответственно. Хаб следит за сигналами нисходящего порта и сигнализирует об их смене. После обнаружения смены состояния системное ПО выжидает около 100 мс (время на успокоение сигналов) и проверяет состояния порта. Обнаружив факт подключения и тип устройства (LS или FS/HS), ПО дает для этого порта команду сброса шины.

Для выполнения сброса шины (команда Bus Reset) хаб опускает уровень поднятого устройством сигнала (D+ или D) на 10–20 мс (то есть подает сигнал SE0 в течение 10–20 мс). Считается, что через 10 мс после этого сброса устройство должно быть готово к конфигурированию (отзываться только на обращения к EP0 по нулевому адресу устройства).

Сброс шины для устройства HS запускает протокол согласования скорости. При подключении, как и по сигналу сброса, HS-устройство устанавливает свои схемы в состояние FS (отключая терминаторы и включая Ruf). Таким образом, поначалу HS-устройство выглядит для хаба как FS-устройство. Для согласования скорости используется так называемое «чириканье» (chirp-sequence): в ответ на состояние SE0, введенное хабом для сброса (заземлением линии D+), HS-устройство своим дифференциальным токовым передатчикам вводит состояние «chirp-K» (пуская импульс тока в линию D-). На этот импульс HS-хаб ответит импульсом на линии D+, так что получится состояние «chirp-J». Такой обмен импульсами повторяется еще дважды; после успеха согласования и устройство и хаб принимают режим работы HS (и резистор Ruf отключается). Все это «чириканье» занимает 10–20 мс, после чего шина переходит в состояние покоя HS-Idle (длительный сигнал SE0). Теперь хосту надо снова опросить состояние порта хаба, чтобы уточнить режим подключенного устройства (FS или HS). Если HS-устройство подключено к FSпорту, хаб на «чириканье» устройства не ответит.

Отключение устройств FS/LS обнаруживается хабом просто по длительному (более 2 мкс) состоянию SE0. Этот факт хаб доводит до сведения системного ПО (USBD), чтобы устройство было вычеркнуто из всех рабочих списков. Отключение устройств HS таким способом обнаружить не удается, поскольку состояние шины (SE0) при отключении устройства не изменится. Для обнаружения отключения HS-устройства используют эффект отражения сигнала при потере согласованности линии. Специально для этих целей в схему хаба введен дополнительный детектор отключения, а в маркере микрокадра SOF признак EOP (0111…111) удлинен до 40 битовых интервалов. Транслируя SOF на высокоскоростной порт, детектор отключения следит за уровнем сигнала J, и если он превышает порог (625 мВ дифференциального сигнала), значит, нагрузки на другой стороне нет, то есть устройство отключено. Удлинение EOP необходимо, поскольку устройство может отключиться внутренне, и из-за задержки в кабеле устройства (2×26 нс) отраженный сигнал может задержаться до 25 нс. С целью сокращения накладных расходов это удлинение EOP сделали только для пакетов SOF, появляющихся всего раз в 125 мкс.

Команду приостановки устройства — Suspend хаб сигнализирует длительным состоянием покоя (Bus Idle). При этом он должен переставать транслировать все кадры, включая и маркеры микрокадров на порты, для которых подается эта команда. На порты, работающие в LS-режиме, маркеры кадров не транслируются; чтобы LS-устройство не приостанавливалось при отсутствии полезного трафика, ему вместо маркеров SOF хаб с тем же периодом посылает сигнал LS-EOP (SE0 в течении 1,33 мкс). Приостановка делается не менее чем на 20 мс — за это время устройство должно успеть перейти в приостановленное состояние и стать готовым к получению сигнала возобновления.

Команду приостановки HS-порта хаб сигнализирует покоем (SE0) в течение 3 мс, после чего переключает свои цепи в режим FS (отключает терминаторы), но помнит, что порт находится в режиме HS. Для HS-устройства команда приостановки поначалу неотличима от сброса. Чтобы их различить, через 3–3,125 мс непрерывного состояния SE0 HS-устройство переключает свои цепи в режим FS (отключает терминаторы и включает Ruf). Далее, через 100–875 мкс устройство проверяет состояние линий. Если обе лини D+ и D- оказались в низкоуровневом состоянии, значит, хаб подал команду сброса (и устройство должно выполнить chirp-последовательность). Если уровень D+ высокий, а D- низкий (FS-Idle), то это сигнал к приостановке. Таким образом, по состоянию сигналов на шине приостановка выглядит как покой LS/FS — то есть состояние J.

Сигналом к возобновлению работы (resume) является перевод шины в состояние K на длительное время (20 мс), достаточное для «оживления» устройств, после чего хаб посылает сигнал LS-EOP (SE0 в течение 1,33… мкс). После этого шина переходит в состояние покоя соответствующей скорости и начинает передаваться трафик. Сигнал возобновления может подать как хаб, так и приостановленное устройство; последний случай называется удаленным пробуждением. По сигналу возобновления устройство, работавшее в HS-режиме, и его порт хаба переключают свои цепи в HS-режим без всякого согласования (они помнят свой режим).

Удаленное пробуждение — Remote Wakeup — это единственный случай на USB, когда сигнальную инициативу проявляет устройство (а не хост). Сигнал пробуждения может подать только приостановленное устройство, для которого шина находится в FS/LS-состоянии J (резисторами подтягивается вверх D+ или D-). Для сигнализации пробуждения устройство на некоторое время (1–15 мс) формирует состояние K, которое воспримется хабом как сигнал Resume и транслируется им на восходящий порт и на все разрешенные нисходящие порты, включая и тот порт, с которого пришел данный сигнал.



Подкатегории