link280 link281 link282 link283 link284 link285 link286 link287 link288 link289 link290 link291 link292 link293 link294 link295 link296 link297 link298 link299 link300 link301 link302 link303 link304 link305 link306 link307 link308 link309 link310 link311 link312 link313 link314 link315 link316 link317 link318 link319 link320 link321 link322 link323 link324 link325 link326 link327 link328 link329 link330 link331 link332 link333 link334 link335 link336 link337 link338 link339 link340 link341 link342 link343 link344 link345 link346 link347 link348 link349 link350 link351 link352 link353 link354 link355 link356 link357 link358 link359 link360 link361 link362 link363 link364 link365 link366 link367 link368 link369 link370 link371 link372 link373 link374 link375 link376 link377 link378 link379 link380 link381 link382 link383 link384 link385 link386 link387 link388 link389 link390 link391 link392 link393 link394 link395 link396 link397 link398 link399 link400 link401 link402 link403 link404 link405 link406 link407 link408 link409 link410 link411 link412 link413 link414 link415 link416 link417 link418 link419

PersCom — Компьютерная Энциклопедия Компьютерная Энциклопедия

USB

Структуры данных и регистры контроллера UHC

Драйвер в системной памяти создает список кадров Frame List, состоящий из 1024 элементов. Каждый элемент этого списка содержит 32-битный указатель на связанный список структур данных, по которым контроллер выполняет транзакции в данном кадре. Хост-контроллер имеет регистр базового адреса списка кадров, указывающий на начало списка. Текущий номер отрабатываемого элемента определяется десятью младшими битами счетчика кадров, находящегося в контроллере и инкрементируемого каждую миллисекунду. Период счета кадров можно немного варьировать, изменяя константу, занесенную в регистр модификации длительности кадра (SOF Modify Register), что обеспечивает возможность подстройки частоты кадров для синхронизации изохронных обменов.

Элемент списка кадров может указывать либо на дескриптор изохронной передачи TD (Transfer Descriptor), либо (если в данном кадре изохронный обмен не планируется) на заголовок очереди QH (Queue Head). Если в данном кадре вообще не планируются передачи, то в элементе устанавливается признак-«заглушка» T (Terminate, конец связанного списка, в данном случае — пустого). Еще раз напомним, что здесь слово «передача» (Transfer, согласно спецификации UHCI) употребляется в узком смысле — она соответствует одной транзакции (передаче не более одного пакета данных). Элемент (32-битное слово) имеет формат, приведенный на рисунке ниже. Поле FLLP (Frame List Link Pointer) — указатель на элемент; бит T — признак последнего элемента (при T = 1 указатель FLLP недействителен). Бит Q задает класс связанного элемента, на который указывает FLLP (0 — TD, 1 — QH).

Для каждого кадра из списка устанавливается своя цепочка дескрипторов изохронных передач (возможно и пустая), последний из этой цепочки должен ссылаться на цепочку заголовков очередей. Цепочки заголовков QH могут быть общими для группы кадров или даже для всех кадров списка. Общая идея построения очередей состоит в том, чтобы создавать свою очередь для каждого установленного канала (для всех сконфигурированных точек, кроме изохронных). «Дежурный» метод обслуживания — по горизонтали, тогда после выполнения транзакции с одной точкой контроллер перейдет к другой точке (другой очереди). Связывание TD и QH через указатели позволяет формировать произвольные конфигурации переходов от одной очереди к другой и даже делать петли — в последнем случае возможно, что с одной точкой в кадре успеют пройти несколько транзакций. Однако это нетипичный способ планирования. Если очередей много (установлено много каналов), то они распределяются по кадрам (из 1024-элементного списка) так, чтобы цепочка каждого кадра обязательно прошла по горизонтали до конца. Это можно спланировать, поскольку максимальное время для отработки одного элемента каждой очереди (как и изохронных транзакций) заранее известно (оно определяется типом передачи, максимальным размером пакета и скоростью устройства, что известно системе USB). При необходимости «горизонтальную справедливость» можно нарушить, задав вертикальный порядок обслуживания, — контроллер, успешно обработав из очереди передачу с признаком V = 1, перейдет к следующему дескриптору из этой же очереди, а не к следующей очереди.

Дескрипторы передач и заголовки очередей размещаются драйвером в ОЗУ по адресам, выровненным по границе параграфа, поскольку в качестве указателей используются лишь старшие 28 бит (биты [3:0] используются для служебных признаков).

Дескриптор передачи (TD) состоит из 32 байтов, из которых хост-контроллер использует только первые четыре 32-битных слова DW0–DW3. Слова DW4–DW7 зарезервированы для использования драйвером UHC (для организации «сборки мусора» — повторного использования отработанных областей). Формат дескриптора передачи приведен на рисунке ниже. Серым цветом выделены поля, модифицируемые хост-контроллером.

В слове DW0 поле Link Pointer аналогично полю FLLP, а биты T и Q аналогичны одноименным битам элемента списка кадров. Бит V — метод обслуживания TD (1 — в глубину, 0 — в ширину).

Слово DW1 используется для управления и определения состояния выполнения передачи, модифицируется хост-контроллером. Поле ActLen — действительная длина переданных данных; поле Status — состояние выполнения передачи:

длина переданных данных; поле Status — состояние выполнения передачи:

  • бит 23: Active — «надо исполнять», устанавливается драйвером, сбрасывается контроллером по успешному исполнению или исчерпанию лимита повторов;
  • бит 22: Stalled — точка ответила пакетом STALL;
  • бит 21: Data Buffer Error — ошибка буфера данных (переполнение или переопустошение FIFO при выполнении транзакции), транзакция остается активной (при переопустрошении контроллер генерирует пакет с ошибочным CRC, при переполнении не отвечает подтверждением);
  • бит 20: Babble — при выполнении данной транзакции обнаружена «болтливость» устройства (оно отключается и устанавливается бит Stalled);
  • бит 19: NAK — получение соответствующего ответа (в транзакции SETUP получение NAK устанавливает и признак ошибки тайм-аута);
  • бит 18: CRC/Time Out Error — обнаружена ошибка передачи (CRC или таймаут);
  • бит 17: Bitstuff Error — обнаружена ошибка вставки бит.

Биты [24:31] используются для управления передачей. Бит IOC заказывает прерывание по исполнению (прерывание генерируется в конце кадра, даже если транзакция уже неактивна, выборка ее дескриптора вызовет прерывание). Бит ISO — признак изохронной передачи (указание не делать повторных попыток). Бит LS — признак LS-устройства, использовать преамбулу перед передачей. Поле C_ERR — счетчик повторных попыток, декрементируемый по каждой ошибке. Переход в 1 или 0 вызывает перевод дескриптора в неактивное состояние. Если драйвер устанавливает нулевое значение, то число повторов неограниченно. Бит SPD — детектор короткого пакета: если в транзакции IN, стоящей в очереди, успешно принято меньше данных, чем ожидалось, то в конце кадра вырабатывается условие прерывания.

В слове DW2 содержится информация для выполнения транзакции: Packet ID — тип используемого маркера IN (69h), OUT (E1h) или SETUP (2Dh); Device Address— адрес устройства USB; EndPt — номер и направление конечной точки. Бит D (Data Toggle) — состояние переключателя для передаваемого или посылаемого пакета. Поле MaxLength — длина передаваемых данных (максимальная длина принимаемых), 000 — 1 байт, 001 — 2, 3FF — 1024; 7FFh — 0 (пустой пакет). Допустимые значения до 4FFh — 1280 байт, теоретический предел емкости кадра. Значения 500–7FEh недопустимы, вызывают фатальную ошибку контроллера.

В слове DW3 содержится Buffer Pointer — указатель на буфер в ОЗУ, используемый для данных этой передачи.

Заголовок очереди (QH) связывает очереди друг с другом (по горизонтали) и ссылается на первый элемент (TD) данной очереди. Хост-контроллер использует два 32-битных слова (см. следующий рисунок). В поле QHLP (Queue Head Link Pointer) содержится указатель на следующий заголовок очереди (горизонтальная связка). В поле QELP (Queue Element Link Pointer) содержится указатель на элемент очереди (вертикальная связка). Признаки последнего элемента (T) и класс связанного элемента (Q) аналогичны одноименным признакам и классам в вышеприведенных структурах.

Дескриптор заголовка очереди создается драйвером; хост-контроллер модифицирует в памяти указатель QELP: успешно отработав транзакцию, контроллер берет из DW0 ее дескриптора указатель на следующий элемент и помещает его на место QELP в заголовке очереди. Таким образом, успешно отработанный TD удаляется из очереди. Когда удаляется последний TD, в QELP устанавливается признак пустой очереди (T). В случае неисправимой ошибки при отработке какого-то дескриптора в QELP также устанавливается «заглушка» T — поток с гарантированной доставкой не позволяет пропустить какую-либо транзакцию. Поле QELP может ссылаться как на TD (тривиальный вариант планирования), так и на QH — очередь сама может содержать очереди.

Регистровая модель UHC поясняется в таблице ниже, где представлены регистры, отображенные на пространство ввода/вывода. Кроме того, как всякое устройство PCI, контроллер UHC имеет регистры в конфигурационном пространстве, в которых, в частности, задаются коды класса (0Ch — контроллер последовательной шины), подкласса (03 — USB) и программного интерфейса (00) в классификации PCI SIG.

Таблица. Регистры контроллера UHC

Адрес Назначение
Base + (00–01h)

USBCMD — регистр команд USB

Биты 15:8 — резерв
Бит 7: MAXP (Max Packet) — допустимый размер пакета (для FS), с которым
возможна транзакция при подходе к концу кадра: 1 = 64 байт, 0 = 32 байта

Бит 6: CF (Configure Flag) — флаг, которым драйвер отмечает окончание процесса
конфигурирования контроллера (программный семафор для ПО)
Бит 5: SWDBG (Software Debug) — управление отладкой: 1=режим отладки (останов
после каждой транзакции), 0 — нормальный
Бит 4: FGR (Force Global Resume) — подача сигнала глобального
пробуждения.Устанавливается программно, сбрасывается аппаратно по окончании
пробуждения
Бит 3: EGSM (Enter Global Suspend Mode) — перевод в режим глобальной
приостановки
Бит 2: GRESET (Global Reset) — общий сброс контроллера и шины USB
Бит 1: HCRESET (Host Controller Reset) — сброс хост-контроллера
Бит 0 RS (Run/Stop) управление работой контроллера: 1=Run — выполнение
транзакций по плану, 0=Stop — останов

Base + (02–03h)

USBSTS — регистр состояния USB

Биты [15:6] — резерв
Бит 5: HCHalted — контроллер остановлен, программно или аппаратно (по ошибке
или при отладке)
Бит 4: Host Controller Process Error — фатальная ошибка исполнения (может
возникать и из-за некорректного задания PID в дескрипторе транзакций), вызывает
прерывание
Бит 3: Host System Error — системная ошибка (неполадки в интерфейсе PCI),
вызывает прерывание
Бит 2: Resume Detect — получение сигнала возобновления (при глобальной
приостановке)
Бит 1: USB Error Interrupt — признак прерывания по ошибке выполнения
транзакции (переполнение или переопустошение FIFO буфера шины PCI)
Бит 0: USBINT (USB Interrupt) — прерывание по выполнению транзакции
с установленным битом IOC или приему короткого пакета (при включенном
обнаружении короткого пакета)

Base + (04–05h)

USBINTR — регистр разрешения прерываний

Биты [15:4] — резерв
Бит 3: Short Packet Interrupt Enable — разрешение прерываний по приему
короткого пакета
Бит 2: IOC (Interrupt On Complete Enable) — разрешение прерываний по завершении
транзакции
Бит 1: Resume Interrupt Enable — разрешение прерываний по приему сигнала
возобновления
Бит 0: Timeout/CRC Interrupt Enable — разрешение прерываний по ошибке
тайм-аута и CRC-контролю

Base + (06–07h) FRNUM — регистр номера кадра
Base + (08–0Bh) FRBASEADD — регистр базового адреса списка кадров
Base + 0Ch

SOFMOD — регистр управления частотой кадров

Биты [6:0] — управление длительностью кадра: 0 — 11936 бит, 1 — 11937 бит, …
63 — 11999 бит, 64 — 12000 бит (номинал), 65 — 12001 бит, 127 — 12063 бит

Base + (10–11h)

PORTSC1 — регистр управления и состояния порта 1

Биты [15:13] — резерв (0)
Бит 12: (R/W) Suspend — приостановка порта
Биты [11:10] — резерв (0)
Бит 9: (R/W) Port Reset — сброс порта

Бит 8: (RO) Low Speed Device Attached — признак подключения LS-устройства
Бит 7 — резерв (1)
Бит 6: (RW) Resume Detect — обнаружение сигнала возобновления. Запись «1»
вызывает генерацию сигнала возобновления на порте, последующая запись
«0» — завершение сигнала возобновления и посылка LS-EOP Биты [5:4]: (RO) —
текущее состояние линий D- и D+
Бит 3: (R/WC) Port Enable/Disable Change — признак автоматического запрета
порта по ошибке, сбрасывается записью «1»
Бит 2: (R/W) Port Enabled/Disabled — разрешение работы порта
Бит 1: (R/WC) Connect Status Change — признак события подключения/
отключения устройства
Бит 0: (RO) Current Connect Status — признак подключенного устройства

Base + (12–13h) PORTSC2 — регистр управления и состояния порта 2 (аналогично предыдущему)