link980 link981 link982 link983 link984 link985 link986 link987 link988 link989 link990 link991 link992 link993 link994 link995 link996 link997 link998 link999 link1000 link1001 link1002 link1003 link1004 link1005 link1006 link1007 link1008 link1009 link1010 link1011 link1012 link1013 link1014 link1015 link1016 link1017 link1018 link1019 link1020 link1021 link1022 link1023 link1024 link1025 link1026 link1027 link1028 link1029 link1030 link1031 link1032 link1033 link1034 link1035 link1036 link1037 link1038 link1039 link1040 link1041 link1042 link1043 link1044 link1045 link1046 link1047 link1048 link1049 link1050 link1051 link1052 link1053 link1054 link1055 link1056 link1057 link1058 link1059 link1060 link1061 link1062 link1063 link1064 link1065 link1066 link1067 link1068 link1069 link1070 link1071 link1072 link1073 link1074 link1075 link1076 link1077 link1078 link1079 link1080 link1081 link1082 link1083 link1084 link1085 link1086 link1087 link1088 link1089 link1090 link1091 link1092 link1093 link1094 link1095 link1096 link1097 link1098 link1099 link1100 link1101 link1102 link1103 link1104 link1105 link1106 link1107 link1108 link1109 link1110 link1111 link1112 link1113 link1114 link1115 link1116 link1117

PersCom — Компьютерная Энциклопедия Компьютерная Энциклопедия

PCI Express

Физический уровень и конструктивы PCI Express

Физический уровень интерфейса допускает как электрическую, так и оптическую реализацию. Базовое соединение электрического интерфейса (1x) состоит из двух дифференциальных низковольтных сигнальных пар — передающей (сигналы PETp0, PETn0) и принимающей (PERp0, PERn0). В интерфейсе применена развязка передатчиков и приемников по постоянному току, что обеспечивает совместимость компонентов независимо от технологии изготовления компонентов и снимает некоторые проблемы передачи сигналов. Для передачи используется самосинхронизирующееся кодирование, что позволяет достигать высоких скоростей передачи. Базовая скорость — 2,5 Гбит/с «сырых» данных (после кодирования 8B/10B) в каждую сторону, в перспективе планируются и более высокие скорости. Для масштабирования пропускной способности возможно агрегирование сигнальных линий (lanes, сигнальных пар в электрическом интерфейсе), по одинаковому числу в обоих направлениях. Спецификация рассматривает варианты соединений из 1, 2, 4, 8, 12, 16 и 32 линий (обозначаются как x1, x2, x4, x8, x12, x16 и x32); передаваемые данные между ними распределяются побайтно. В каждой из линий самосинхронизация выплняется независимо, так что явление переноса (бич параллельных интерфейсов) отсутствует. Таким образом достижима скорость до 32×2,5 = 80 Гбит/с, что примерно соответствует пиковой скорости 8 Гбайт/с. Во время аппаратной инициализации в каждом соединении согласуется число линий и скорость передачи; согласование выполняется на низком уровне без какого-либо программного участия. Согласованные параметры соединения действуют на все время последующей работы.

Обеспечение «горячего» подключение на физическом уровне PCI Express не требует каких-либо дополнительных аппаратных затрат, поскольку двухточечное соединение не затрагивает «лишних» участников. Безопасная коммутация сигналов не требуется, возможности подключаемого устройства никак не влияют на режимы работы остальных устройств.

Малое число сигнальных контактов интерфейса дает большую свободу в выборе конструктивных реализаций PCI Express:

  • соединение компонентов в пределах платы;
  • слоты и карты расширения в конструктивах PC/AT и ATX;
  • внутренние и внешние карты расширения мобильных ПК;
  • малогабаритные модули ввода/вывода для серверов и коммуникационной аппаратуры;
  • модули для промышленных компьютеров;
  • разъемное подключение «дочерних» карт (mezannine interface);
  • кабельные соединения блоков.

Для карт расширения в конструктивах PC/AT и ATX предусматриваются разные модификации разъема-слота PCI Express, отличающиеся числом пар сигнальных линий (x1, x4, x8, x16) и, соответственно, размером (см. рисунок ниже). При этом в слоты большего размера можно устанавливать карты с разъемом того же размера или меньшего (это называется Up-plugging). Однако противоположный вариант (Downplugging) — большую карту в меньший слот — механически невозможен (в PCI/PCI-X это возможно). Как было показано выше, самый маленький вариант PCI Express обеспечивает пропускную способность на уровне стандартной шины PCI.

Назначение контактов слотов PCI Express приведено в таблице ниже.

Набор сигналов интерфейса PCI Express невелик:

  • PETp0, PETn0… PETp15, PETn15 — выходы передатчиков сигнальных пар 0…15;
  • PERp0, PERn0… PERp15, PERn15 — входы приемников;
  • REFCLK+ и REFCLK — сигналы опорной частоты 100 МГц;
  • PERST# — сигнал сброса карты;
  • WAKE# — сигнал «пробуждения» (от карты);
  • PRSNT1#, PRSNT2# — сигналы обнаружения подключения-отключения карты для системы горячего подключения. На карте эти цепи соединяются между собой, причем для PRSNT2# выбирается контакт с самым большим номером. Это позволяет точнее отслеживать моменты подключения-отключения (в случае наклона карты). Для определения числа линий подключенной карты данные линии не используются — разрядность линий определяется автоматически при установлении соединения (в процедуре тренировки).

Дополнительно на слоте имеются необязательные сигналы шины SMBus (SMB_CLK и SMB_DATA) и интерфейса JTAG (TCLK, TDI, TDO, TMS, TRST#).

Питание на карты подается по следующим шинам:

  • +3,3V — основное питание +3 В при токе до 9 А;
  • +12V — основное питание +12 В при токе до 0,5/2,1/4,4А для слотов x1/x4, x8/x16 соответственно;
  • +3,3Vaux — дополнительное питание, ток до 375 мА в системах, способных к пробуждению по сигналу от карты и до 20 мА в непробуждаемых системах.

 

Таблица. Разъемы PCI Express

Ряд B Ряд A
1  +12V  PRSNT1#
2  +12V  +12V
3  Резерв  +12V
4  GND  GND
5  SMB_CLK  TCK
6  SMB_DATA  TDI
7  GND  TDO
8  +3.3 V  TMS
9  TRST#  +3.3 V
10  +3.3 Vaux  +3.3 V
11  WAKE#  PERST#
КЛЮЧ
12  Резерв  GND
13  GND  REFCLK+
14  PETp0  REFCLK-
15  PETn0  GND
16  GND  PERp0
17  PRSNT2#  PERn0
18 GND  GND
Конец x1-коннектора
19  PETp1  Резерв
20  PETn1  GND
21  GND  PERp1
22  GND  PERn1
23  PETp2  GND
24  PETn2  GND
25  GND  PERp2
26  GND  PERn2
27  PETp2  GND
28  PETn2  GND
29  GND  PERp3
30  Резерв  PERn3
31  PRSNT2#  GND
32  GND  Резерв
Конец x4-коннектора
33  PETp4  Резерв
34  PETn4  GND
35  GND  PERp4
36  GND  PERn4
37  PETp5  GND
38  PETn5  GND
39  GND  PERp5
40  GND  PERn5
41  PETp6  GND
42  PETn6  GND
43  GND  PERp6
44  GND  PERn6
45  PETp7  GND
46  PETn7  GND
47  GND  PERp7
48  PRSNT2#  PERn7
49  GND  GND
Конец x8-коннектора
50  PETp8  Резерв
51  PETn8  GND
52  GND  PERp8
53  GND  PERn8
54  PETp9 GND
..... ..... .....
79  PETn15  GND
80  GND  PERp15
81  PRSNT2#  PERn15
82  GND  GND
Конец x16-коннектора

 

Для мобильных компьютеров PCMCIA ввела конструктив ExpressCard (см. следующий рисунок), для которого на системный разъем выводится два интерфейса: PCI Express (1x) и USB 2.0. Модули ExpressCard компактнее прежних карт PCMCIA (PC Card и CardBus); предлагается две модификации, различающиеся по ширине: ExpressCard/34 (34×75×5 мм) и ExpressCard/54 (54×75×5 мм). Толщина модулей всего 5 мм, но, если требуется, то более длинные модули могут иметь утолщения в части, выходящие за габариты корпуса компьютера (за пределами 75 мм от края разъема). Как и прежние карты PCIMCIA, карты ExpressCard доступны пользователям и поддерживают «горячее» подключение.

Для внутренних карт расширения блокнотных ПК введен конструктив Mini PCI Express (см. рисунок ниже), формат которого происходит от Mini PCI Type IIIA. Благодаря уменьшению числа контактов ширина карты уменьшена до 30 мм, так что на месте одной карты Mini PCI можно разместить пару карт Mini PCI Express. На разъем карты (см. таблицу ниже) кроме PCI Express выведены интерфейсы последовательных шин USB 2.0 (USB_D+ и USB_D-) и SMBus (SMB_CLK и SMB_DATA), питание +3,3 В (750 мА основное и 250 мА дополнительное) и +1,5 В (375 мА). Собственно интерфейс PCI Express (x1) занимает всего 6 контактов (выходы передатчика PETp0 и PETn0, входы приемника PERp0 и PERn0, а также сигналы опорной частоты 100 МГц REFCLK+ и REFCLK-. Сигнал PERST# — сброс карты, сигнал WAKE# — «пробуждение» (от карты). Сигналы LED_Wxxx# служат для управления светодиодными индикаторами состояния.

 

Таблица. Разъемы Mini PCI Express

Цепь Цепь
1 WAKE# 2 3.3 V
3 Резерв 4 GND
5 Резерв 6 1.5 V
7 Резерв 8 Резерв
9 GND 10 Резерв
11 REFCLK+ 12 Резерв
13 REFCLK- 14 Резерв
15 GND 16 Резерв
Ключ
17 Резерв 18 GND
19 Резерв 20 Резерв
21 GND 22 PERST#
23 PERn0 24 +3.3 V
25 PERp0 26 GND
27 GND 28 +1.5 V
29 GND 30 SMB_CLK
31 PETn0 32 SMB_DATA
33 PETp0 34 GND
35 GND 36 USB_D-
37 Резерв 38 USB_D+
39 Резерв 40 GND
41 Резерв 42 LED_WWAN#
43 Резерв 44 LED_WLAN#
45 Резерв 46 LED_WPAN#
47 Резерв 48 +1.5 V
49 Резерв 50 GND
51 Резерв 52 +3.3 V

 

С интерфейсом PCI Express удобно компонуются модули ввода/вывода и сетевых интерфейсов для серверов и коммуникационных устройств стоечного исполнения. Такие модули могут быть достаточно компактными (высота 2U не вызывает проблем размещения разъема), при этом производительности интерфейса достаточно даже для таких критичных модулей, как Fibre Channel, Gigabit Ethernet (GbE), 10GbE.

Интерфейс PCI Express принимается и для промышленных компьютеров, для чего имеются спецификации PICMG 3.4 (малогабаритные конструктивы для x1, x2 и x4), а также конструктивы в формате Compact PCI.

Интерфейс PCI Express существует и в кабельном исполнении для кабельных соединений блоков, находящихся на небольшом удалении друг от друга. Так, например, по PCI Express можно подключать док-станции к блокнотным ПК. Возможность вывода интерфейса системного уровня за пределы корпуса компьютера из предшественников PCI Express поддерживала только шина ISA, и то только при низких скоростях обмена (на частотах до 5 МГц). Из новых последовательных интерфейсов системного уровня эта возможность имеется и в InfiniBand. Наличие кабельного варианта высокопроизводительного интерфейса системного уровня может позволить отойти от традиционной компоновки компьютера, при которой в системном блоке концентрируются все компоненты, требующие интенсивного обмена с ядром компьютера.