link280 link281 link282 link283 link284 link285 link286 link287 link288 link289 link290 link291 link292 link293 link294 link295 link296 link297 link298 link299 link300 link301 link302 link303 link304 link305 link306 link307 link308 link309 link310 link311 link312 link313 link314 link315 link316 link317 link318 link319 link320 link321 link322 link323 link324 link325 link326 link327 link328 link329 link330 link331 link332 link333 link334 link335 link336 link337 link338 link339 link340 link341 link342 link343 link344 link345 link346 link347 link348 link349 link350 link351 link352 link353 link354 link355 link356 link357 link358 link359 link360 link361 link362 link363 link364 link365 link366 link367 link368 link369 link370 link371 link372 link373 link374 link375 link376 link377 link378 link379 link380 link381 link382 link383 link384 link385 link386 link387 link388 link389 link390 link391 link392 link393 link394 link395 link396 link397 link398 link399 link400 link401 link402 link403 link404 link405 link406 link407 link408 link409 link410 link411 link412 link413 link414 link415 link416 link417 link418 link419

PersCom — Компьютерная Энциклопедия Компьютерная Энциклопедия

Оперативная память

Модули SIMM, DIMM и RIMM

Изначально оперативная системная память устанавливалась в виде отдельных микросхем, которые благодаря своей конструкции получили название “микросхемы с двухрядным расположением выводов” (Dual Inline Package — DIP). Системные платы оригинальных систем IBM XT и АТ содержали до 36 разъемов, предназначенных для подключения микросхем памяти. В дальнейшем микросхемы памяти устанавливались на отдельных платах, которые, в свою очередь, подключались в разъемы шины. Я до сих пор помню, сколько времени отнимала эта утомительная и однообразная работа.

Нельзя обойти стороной еще один важный недостаток такой организации памяти — микросхемы постепенно “выползали” из своих гнезд. Виной тому был жесткий температурный режим. Компьютеры постоянно включались и выключались, в результате чего микросхемы нагревались и охлаждались. Изменение длины контактов микросхем приводило к тому, что микросхемы постепенно сами выталкивали себя из гнезд. Когда в конце концов контакт обрывался, это приводило к ошибке памяти. Устранить проблему можно, более плотно вставив микросхему в гнездо, однако представьте себе, сколько лишней работы предполагало обслуживание нескольких десятков компьютеров в компании.

Альтернативой этому подходу служило только припаивание контактов микросхем к материнской плате или карте расширения. Однако такое постоянное прикрепление вызывало другую проблему — в случае выхода из строя одного из модулей памяти его приходилось выпаивать или вырезать кусачками, одновременно припаивая новую микросхему. Этот подход был более дорогостоящим; к тому же существовал дополнительный риск повреждения микросхем. Получалось так, что микросхемы должны быть одновременно и припаянными, и легко заменяемыми. Этот принцип нашел свое применение в модулях SIMM. В качестве альтернативы установке отдельных микросхем памяти в абсолютном большинстве настольных систем используют модули SIMM, DIMM или RIMM. Это небольшие платы с микросхемами памяти, которые вставляются в специальные разъемы материнской платы. Отдельные микросхемы припаяны к плате модуля, так что их индивидуальное удаление и замена невозможны. Если какая-либо микросхема модуля выходит из строя, приходится заменять весь модуль. Таким образом, модуль памяти можно рассматривать как одну большую микросхему.

Сегодня существует два основных типа модулей SIMM, три — модулей DIMM и только один тип модулей RIMM. Все они используются в настольных системах. Типы модулей различаются количеством выводов, шириной строки памяти или типом памяти.

К основным типам модулей SIMM относятся 30-контактный (8 бит плюс 1 дополнительный бит контроля четности) и 72-контактный (32 бит плюс 4 дополнительных бита контроля четности), обладающие различными свойствами. 30-контактный модуль SIMM имеет меньшие размеры, чем 72-контактный, причем микросхемы памяти в обоих случаях могут быть расположены как на одной стороне платы, так и на обеих. Модули SIMM широко использовались с конца 1980-х до конца 1990-х годов, однако сейчас их можно найти только в устаревших системах.

Как уже отмечалось, существует три типа модулей DIMM, которые обычно содержат стандартные микросхемы SDRAM или DDR SDRAM и отличаются друг от друга физическими характеристиками. Стандартный модуль DIMM имеет 168 выводов, по одному радиусному пазу с каждой стороны и два паза в области контакта. Модуль DDR DIMM имеет 184 вывода, по два паза с каждой стороны и только один паз в области контакта. Модуль DDR2 DIMM имеют 240 выводов, два разъема на правой и левой сторонах модуля и один — в центре контактной области. Длина тракта данных модулей DIMM может достигать 64 бит (без контроля четности) или 72 бит (с контролем четности или поддержкой кода коррекции ошибок ЕСС). На каждой стороне платы DIMM расположены различные выводы сигнала. Именно поэтому они называются модулями памяти с двухрядным расположением выводов. Эти модули примерно на один дюйм (25 мм) длиннее модулей SIMM, но благодаря своим свойствам содержат гораздо больше выводов.

Примечание!

Многие пользователи, в том числе профессионалы, неверно трактуют термины ‘‘односторонний’’ и ‘‘двухсторонний’’ в контексте модулей памяти. На самом деле эти термины не имеют ничего общего с местом расположения микросхем памяти (на одной или на двух сторонах модуля), а также не указывают, соответствует этот модуль типу SIMM или DIMM (т.е. расположены ли контактные выводы на одной стороне модуля или на обеих). На самом деле данные термины используются для обозначения модулей с одним или двумя банками микросхем памяти. Двухбанковый модуль DIMM имеет два 64-разрядных банка логически объединенных микросхем, т.е. оснащен в два раза большим количеством 64-разрядных рядов памяти, чем односторонний модуль. Как правило, микросхемы при этом размещаются по обе стороны модуля; таким образом, термин ‘‘двухсторонний’’ часто применяется для указания того, что модуль оснащен двумя банками памяти, но это неверно с технической точки зрения. Модули с одним банком памяти (неправильнообозначаемые как односторонние) также могут иметь микросхемы памяти, установленные с обеих сторон модуля, в то время как модули с двумя банками (неверно обозначаемые как двухсторонние) могут представлять собой модуль с микросхемами, установленными лишь на одной стороне. Таким образом, вместо терминов ‘‘односторонний’’ и ‘‘двухсторонний’’ имеет смысл использовать более адекватные и технически обоснованные термины ‘‘однобанковый’’ и ‘‘двухбанковый’’.

Сигнальные выводы, расположенные на разных сторонах платы RIMM, также различны. Существует три физических типа модулей RIMM: 16/18-разрядная версия со 184 выводами, 32/36-разрядная версия, имеющая 232 вывода, и 64/72-разрядная версия, содержащая 326 выводов. Размеры разъемов, используемых для установки модулей памяти, одинаковы, но расположения пазов в разъемах и платах RIMM различны, что позволяет избежать установки несоответствующих модулей. Любая системная плата поддерживает только один тип модулей памяти. Вначале наиболее распространенным типом являлась 16/18-разрядная версия; 32-разрядная версия модулей памяти была представлена в конце 2002 года, а 64-разрядная появилась в 2004 году.

Стандартный 16/18-разрядный модуль RIMM имеет 184 вывода, по одному пазу с каждой стороны и два симметрично расположенных паза в области контакта. Для приложений, не поддерживающих код коррекции ошибок (ЕСС), используются 16-разрядные версии, в то время как 18-разрядные включают в себя дополнительные биты, необходимые для поддержки ЕСС.

На рисунках показаны 30-контактный (8 бит) модуль SIMM, 72-контактный (32 бит) модуль SIMM, 168-контактный модуль SDRAM DIMM, 184-контактный модуль DDR SDRAM (64 бит) DIMM, 240-контактные модули DDR2 и DDR3 DIMM и 184-контактный модуль RIMM. Контакты пронумерованы слева направо и расположены с обеих сторон модуля SIMM. Контакты с каждой стороны модуля DIMM отличаются, а у модуля SIMM обе стороны идентичны. Обратите внимание, что размеры указаны как в миллиметрах, так и в дюймах (в скобках), а модули выпускаются как с проверкой четности ECC (используется один дополнительный бит ECC, или четности, на каждые 8 бит данных, в результате чего ширина шины данных составляет 9 бит), так и без нее (в результате ширина шины данных составляет 8 бит).

Модуль SIMM

Модули памяти весьма компактны, учитывая их емкость. В настоящее время существует несколько их разновидностей, имеющих разные значения емкости и быстродействия. В таблице приведены доступные емкости модулей SIMM, DIMM и RIMM.

Модули памяти каждого из типов могут иметь различные быстродействия. Просмотрите документацию к системной плате, где указываются тип и скорость поддерживаемой оперативной памяти. Наилучшим вариантом будет память, скорость передачи данных которой (полоса пропускания) совпадает с производительностью шины процессора (FSB).

Если в систему требуется установить память с определенной частотой, то всегда можно воспользоваться модулем, частота которого выше необходимой величины. Следует заметить, что каких-либо проблем при использовании модулей памяти с разными частотами обычно не возникает. Разница в их стоимости невелика, поэтому я обычно покупаю модули памяти, частота которых выше, чем необходимо для выполнения определенных приложений. Это позволяет использовать их при следующей модернизации системы.

Модули памяти DIMM и RIMM содержат встроенное ПЗУ (ROM), передающее параметры синхронизации и скорости модулей, поэтому рабочая частота контроллера памяти и шины памяти в большинстве систем соответствует наименьшей частоте установленных модулей DIMM/RIMM.

Примечание!

Банк — это наименьший объем памяти, необходимый для формирования одинарной строки памяти, адресуемой процессором. Это минимальное количество считываемой или записываемой процессором физической памяти, которое обычно соответствует ширине шины данных процессора. Если процессор имеет 64-разрядную шину данных, то ширина банка памяти также составляет 64 бит. При использовании двухканальной или чередующейся памяти формируется виртуальный банк, ширина которого вдвое больше абсолютной ширины шины данных процессора.

Заменить модуль памяти модулем более высокой емкости, сохранив при этом работоспособность системы, не всегда возможно. Очень часто максимальный объем модуля, который может быть установлен, ограничен. Модули большей емкости будут работать, только если их установка допускается системной платой. Соответствующие сведения наверняка представлены в руководстве пользователя.