link560 link561 link562 link563 link564 link565 link566 link567 link568 link569 link570 link571 link572 link573 link574 link575 link576 link577 link578 link579 link580 link581 link582 link583 link584 link585 link586 link587 link588 link589 link590 link591 link592 link593 link594 link595 link596 link597 link598 link599 link600 link601 link602 link603 link604 link605 link606 link607 link608 link609 link610 link611 link612 link613 link614 link615 link616 link617 link618 link619 link620 link621 link622 link623 link624 link625 link626 link627 link628 link629 link630 link631 link632 link633 link634 link635 link636 link637 link638 link639 link640 link641 link642 link643 link644 link645 link646 link647 link648 link649 link650 link651 link652 link653 link654 link655 link656 link657 link658 link659 link660 link661 link662 link663 link664 link665 link666 link667 link668 link669 link670 link671 link672 link673 link674 link675 link676 link677 link678 link679 link680 link681 link682 link683 link684 link685 link686 link687 link688 link689 link690 link691 link692 link693 link694 link695 link696 link697 link698 link699

PersCom — Компьютерная Энциклопедия Компьютерная Энциклопедия

Оперативная память

Память типа DRAM

Динамическая оперативная память (Dynamic RAM — DRAM) используется в большинстве систем оперативной памяти современных ПК. Основное преимущество памяти этого типа состоит в том, что ее ячейки очень плотно упакованы, т.е. в небольшую микросхему можно упаковать много битов, а значит, на их основе можно организовать память большой емкости.

Ячейки памяти в микросхеме DRAM — это крошечные конденсаторы, которые удерживают заряды. Именно так (наличием или отсутствием зарядов) и кодируются биты. Проблемы, связанные с памятью этого типа, вызваны тем, что она динамическая, т.е. должна постоянно регенерироваться, так как в противном случае электрические заряды в конденсаторах памяти будут “стекать” и данные будут потеряны. Регенерация происходит, когда контроллер памяти системы берет крошечный перерыв и обращается ко всем строкам данных в микросхемах памяти. Большинство систем имеют контроллер памяти (обычно встраиваемый в набор микросхем системной платы, однако он может быть встроен и в процессор, как в процессорах Athlon 64 и Opteron), который настроен на соответствующую промышленным стандартам частоту регенерации, равную 15 мс. Это означает, что каждые 15 мс прочитываются все строки в памяти для обеспечения регенерации данных.

Регенерация памяти, к сожалению, отнимает время у процессора. Каждый цикл регенерации по длительности занимает несколько тактов центрального процессора. В старых компьютерах циклы регенерации могли занимать до 10% (или больше) процессорного времени, но в современных системах, работающих на частотах, равных сотням мегагерц, эти расходы составляют 1% или меньше. Некоторые системы позволяют изменить параметры регенерации с помощью программы настройки BIOS. Интервал между циклами обновления называется tREF и задается не в миллисекундах, а в тактах (см. рисунок ниже).

Очень важно понимать, что увеличение значения интервала между циклами обновления для повышения быстродействия системы может привести к случайным произвольным ошибкам.

Произвольная ошибка — это ошибка обработки данных, не связанная с дефектом микросхемы памяти. В большинстве случаев надежнее придерживаться рекомендуемой или заданной по умолчанию частоты регенерации. Поскольку затраты на регенерацию в современных компьютерах составляют менее 1%, изменение частоты регенерации оказывает незначительное влияние на характеристики компьютера. Одним из наиболее приемлемых вариантов является использование для синхронизации памяти значений по умолчанию или автоматических настроек, заданных с помощью программы Setup BIOS. Большинство современных систем не позволяют изменять заданную синхронизацию памяти, постоянно используя автоматически установленные параметры. При автоматической установке системная плата считывает параметры синхронизации из системы определения последовательности в ПЗУ (Serial Presence Detect — SPD) и устанавливает частоту периодической подачи импульсов в соответствии с полученными данными.

В устройствах DRAM для хранения одного бита используются только один транзистор и пара конденсаторов, поэтому они более вместительны, чем микросхемы других типов памяти. В настоящее время уже выпускаются микросхемы динамической оперативной памяти емкостью 2 Гбайт и больше. Это означает, что подобные микросхемы содержат более миллиарда транзисторов! А ведь процессор Core 2 Duo имеет только 230 млн. транзисторов. Откуда такая разница? Дело в том, что в микросхеме памяти все транзисторы и конденсаторы размещаются последовательно, обычно в узлах квадратной решетки, в виде очень простых, периодически повторяющихся структур, в отличие от процессора, представляющего собой более сложную схему различных структур, не имеющую четкой организации.

Транзистор каждого одноразрядного регистра DRAM используется для чтения состояния смежного конденсатора. Если конденсатор заряжен, в ячейке записана единица; если заряда нет — записан нуль. Заряды в крошечных конденсаторах все время стекают, поэтому память должна постоянно регенерироваться. Даже мгновенное прерывание подачи питания или какой-нибудь сбой в циклах регенерации приводит к потере заряда в ячейке DRAM, а следовательно, и к потере данных. В работающей системе это приводит к появлению “синего экрана смерти”, глобальным отказам системы защиты, повреждению файлов или к полному отказу системы.

Динамическая оперативная память используется в персональных компьютерах. Поскольку она недорогая, микросхемы могут быть плотно упакованы, а это означает, что запоминающее устройство большой емкости может занимать небольшое пространство. К сожалению, память этого типа не отличается высоким быстродействием, обычно она намного “медленнее” процессора. Поэтому существует множество различных типов организации DRAM, позволяющих улучшить эту характеристику.