PersCom — Компьютерная Энциклопедия Компьютерная Энциклопедия

Детальная информация евроремонт отделка офисов у нас на сайте. Световое и звуковое оборудование звуковое и световое оборудование.

Процессоры

Принципиальное устройство процессора

Процессоры

В конце 1970 г. компания Intel приступила к выпуску первого в мире микропроцессо- ра модели 4004. Он был четырехразрядным, то есть за одну операцию (такт) обрабаты- вал одно 4-разрядное число. В 1972 г. Intel разработала 8-разрядный микропроцессор модели 8008, а в 1978 г. — первый 16-раз- рядный процессор 8086. Он стал базой для персональных компьютеров IBM PC XT, ставших стандартом де-факто для всей компьютерной индустрии. Затем появились процессоры 80286, 80386 (первый 32-раз- рядный процессор), 80486. С появлением в 1995 г. процессоров Pentium начался новый этап развития персональных компьютеров, когда они стали не только рабочим инстру- ментом, но и домашним, бытовым устрой- ством повседневного использования.

В 1995 г. персональный компьютер, оснащенный процессором Pentium 100 и 16 Мбайт оперативной памяти, стал продаваться по цене ниже 3000$. Видимо, этот рубеж стал психологическим барьером, по- скольку продажи росли с космической скоростью вплоть до насыщения рынка, когда в развитых странах 80-85% семей стали владельцами ПК. Поначалу главными покупателями выступали студенты и аспиранты, за- тем к ним подключились школьники и их родители. В последнее время в мире продается около 200 миллионов ПК в год, а средняя цена настольной персоналки не превышает 1000$.

С 1995 г. и по настоящее время различные фирмы выпустили свыше 120 моделей процессоров для персональных компьютеров. Некоторые из них стали знаковыми явлениями в компьютерной индустрии. Основными производителями процессоров для ПК в рассматриваемый период стали компании Intel и AMD. Корпорация Intel с 1995 г. и по настоящее время использовала семь моделей платформ с различными интерфейсами про- цессоров: от Socket 5 до Socket 775. Компания AMD использовала немного меньше — пять платформ (от Socket 7 до Socket 939). Таким образом, в среднем актуальность платформы сохранялась в течение полутора-двух лет.

Простейший компьютер

Самый элементарный компьютер, который только можно себе представить, имеет всего два компонента: процессор и оперативную память, связанные друг с другом группой проводников, которую называют системной шиной.

Процессор имеет ячейки памяти, называемые регистрами. В них данные могут храниться и меняться с огромной скоростью. Арифметикологическое устройство является главным элементом процессора, непосредственно обрабатывающим данные. Данные поступают из регистров и возвращаются в них по мере обработки.

 

Как известно, все современные микропроцессоры являются синхронными. На спаде тактового импульса затворы регистров открываются, чтобы разрешить запись данных и команд из памяти. Затем надлежащие данные поступают по шине в АЛУ. Когда все выполнено, АЛУ приступает к работе. После вычислений результаты передаются шине данных регистров. По фронту следующего импульса они загружаются в регистры. Таким образом, в каждом цикле есть сигнал, который переключает определенные триггеры. Например, в регистры можно загружать данные лишь по фронту импульса, а считывать только по спаду импульса (загрузка в это время блокируется). Именно поэтому АЛУ может в течение одного цикла и считать, и записать данные в регистр.

Как данные, так и команды для их обработки процессор получает из ячеек оперативной памяти по системной шине. В составе системной шины различают: шину данных, адресную шину, шину управления. По шине данных в регистры процессора копируются данные из ячеек памяти. По адресной шине процессор выбирает, начиная с какой именно ячейки он должен получить данные. 32-разрядный процессор способен избирательно подключиться к любой из 232 ячеек оперативной памяти. По шине управления процессор получает из оперативной памяти команды для обработки данных.

Во время работы компьютера данные и программы хранятся в разных областях оперативной памяти. За тем, по каким адресам хранятся исполняемые команды, процессор следит сам с помощью специального регистра, отсчитывающего команды. Указания, из каких адресов брать данные, процессор получает от программ.



Процессорный разъем и шины

Зачем процессорному разъему сотни контактов? Почему рост производительности процессоров сопровождается увеличением количества их выводов, число которых приближается к тысяче (Socket 939)? Для ответа на эти вопросы разберемся с назначением магистралей системной шины, которая подключается к процессорному разъему.

 

Шина данных

Чем больше разрядность данных, тем выше производительность компьютера. Для передачи данных в современных процессорах используют отдельную магистраль — шину данных. Это параллельная шина, то есть каждый разряд данных передается по отдельной линии. Чем выше разрядность шины, тем больше линий. Шина данных в процессоре i286 была 16-разрядной, в процессоре i386 разрядность шины данных увеличена до 32. Начиная с процессора Pentium и до нынешнего Pentium 4 используется 64-разрядная шина, хотя исполнительные устройства ядра остаются при этом 32-разрядными. В итоге число выводов современного процессора для подключения шины данных увеличилось вчетверо по сравнению с i286.

Шина адреса

Вторая группа сигналов, используемых процессором — адресная. Адреса описывают номера ячеек памяти, в которых хранятся данные. Чем выше разрядность адресной шины, тем большее число ячеек памяти можно использовать для хранения данных, тем больше адресуемая память вычислительной системы.

Шина адреса в процессоре г286 была 24-разрядной, что позволяло адресовать 16 Мбайт физической памяти. i386, i486 и Pentium имели адресную шину шириной 32 бит и адресовали 4 Гбайт физической памяти. Шина адреса также является параллельной, то есть увеличение ее разрядности влечет увеличение числа адресных выводов процессора. Так, в процессоре Pentium III адресная шина насчитывает 36 разрядов, что позволило расширить адресуемую память до 64 Гбайт, а на разъеме прибавилось четыре вывода.

Служебная шина

Третья группа сигналов, необходимая процессору для работы, относится к служебным. С их помощью чипсет и процессор обмениваются командами и запросами, по служебной шине осуществляется тактирование и синхронизация процессора, управление напряжением питания. Число сигналов управления и, соответственно, количество выводов разъема, необходимое для обмена служебными сигналами, зависит от архитектуры процессора и чипсета, количества поддерживаемых команд и инструкций. С усложнением архитектуры число служебных линий и сигналов управления увеличивается. Так, процессор i286 имел 18 выводов служебной шины, а процессор Pentium — уже 83.

Шина питания

Подсчитаем число задействованных выводов для перечисленных выше шин современного процессора, например Pentium 4 с интерфейсом Socket 775: 36 для адресной шины, 64 для шины данных, 124 для служебной шины. Как же используются сотни остальных выводов процессора Pentium 41

Некоторое (относительно небольшое) число их зарезервировано для модернизации и будущих ревизий ядра. Например, в процессорах Pentium 4 520 с интерфейсом Socket 775 в резерве числится 28 выводов. Все оставшиеся выводы используются для подачи питания. Эти выводы на принципиальных схемах обычно называются Vcc (плюс питания), Vss (земля) и VTT (терминаторы). Так, в разъеме Socket 775 выводов Vcc — 226 штук, выводов VTT — 24, выводов Vss — 273. Зачем так много линий питания?

Дело в том, что базовые элементы цифровой логики (транзисторы) потребляют ток. Первый восьмиразрядный процессор Intel 8086 имел 29 000 транзисторов. Сейчас Pentium 4 на ядре Prescott насчитывает примерно 125 миллионов транзисторов. И эти миллионы микропереключателей надо обеспечить током. Небольшим, в доли микроампера. Но каждый. В итоге получается, что суммарный ток потребления процессора составляет десятки ампер. Например, максимальный потребляемый кристал-лом ток IСС для Pentium 4 Prescott равен 119 А. Существует мнемоническое правило для расчета минимального числа выводов питания микросхем: «один ампер на один вывод». Однако в такой микросхеме, как процессор, действует еще целый ряд факторов, ведущих к росту числа выводов питания: многослойная архитектура кристалла, борьба с наводками и прочие. Поэтому применительно к современным процессорам можно сформулировать правило: «четыре вывода питания на один ампер». По крайней мере, процессору Pentium III на ядре Tualatin хватало 77 выводов для тока 23 А, сейчас Pentium 4 на ядре Prescott имеет 523 вывода для тока 119 А.

Дальнейшая тенденция очевидна: с расширением разрядности ядра до 64 бит, с внедрением новых архитектур (особенно двухъядерных) и повышением рабочих частот будет расти число выводов процессора. Промежуточный рекорд AMD Athlon 64 с его Socket 939 недолговечен, на подходе новые рекордсмены по числу выводов.

Режимы процессора

Режимы процессора

Все 32-разрядные и более поздние процессоры Intel, начиная с 386-го, а также совместимые с ними могут выполнять программы в нескольких режимах. Режимы процессора предназначены для выполнения программ в различных средах; в разных режимах возможности чипа неодинаковы, потому что команды выполняются по разному. В зависимости от режима процессора изменяется схема управления памятью системы и задачами. Процессоры могут работать в трех режимах.

  • Реальный режим (16-разрядное программное обеспечение).
  • Режим IA-32:
    • защищенный режим (32-разрядное программное обеспечение);
    • виртуальный реальный режим (16-разрядное программное обеспечение в 32-разрядной среде).
  • Расширенный 64-разрядный режим IA-32e (также называемый AMD64, x86-64 и EM64T):
    • 64-разрядный режим (64-разрядное программное обеспечение);
    • режим совместимости (32-разрядное программное обеспечение).

режимы процессора

Реальный режим

Реальный режим иногда называют режимом 8086, поскольку он основан на инструкциях процессоров 8086 и 8088. В первом IBM PC использовался процессор 8088, который мог выполнять 16-разрядные команды, применяя 16-разрядные внутренние регистры, и адресовать только 1 Мбайт памяти, используя для адреса 20 разрядов. Все программное обеспечение PC первоначально было предназначено для этого процессора; оно было разработано на основе 16-разрядной системы команд и модели памяти объемом 1 Мбайт. Например, операционные системы DOS и Windows от 1.x до 3.x, а также все приложения для этих ОС написаны в расчете на 16-разрядные команды. Эти 16-разрядные операционные системы и приложения были разработаны для выполнения на первоначальном процессоре 8088.

Более поздние процессоры, например 286, также могли выполнять те же самые 16-разрядные команды, что и первоначальный 8088, но намного быстрее. Другими словами, процессор 286 был полностью совместим с первоначальным 8088 и мог выполнять все 16-разрядные программы точно так же, как 8088, только значительно быстрее. 16-разрядный режим, в котором выполнялись команды процессоров 8088 и 286, был назван реальным режимом. Все программы, выполняемые в реальном режиме, должны использовать только 16-разрядные команды, 20-разрядные адреса и поддерживаться архитектурой памяти, рассчитанной на емкость до 1 Мбайт. Для программного обеспечения этого типа обычно используется однозадачный режим, т.е. одновременно может выполняться только одна программа. Нет никакой встроенной защиты для предотвращения перезаписи ячеек памяти одной программы или даже операционной системы другой программой; это означает, что при выполнении нескольких программ вполне могут быть испорчены данные или код одной из них, что может привести всю систему к краху (или останову).

Режим IA"32 (32"разрядный)

Первым 32-разрядным процессором, предназначенным для PC, был 386-й. Этот чип мог выполнять абсолютно новую 32-разрядную систему команд. Чтобы полностью использовать преимущество 32-разрядной системы команд, были необходимы 32-разрядная операционная система и 32-разрядные приложения. Этот новый режим назывался защищенным, так как выполняемые в нем программы защищены от перезаписи своих областей памяти другими программами. Такая защита делает систему более надежной, поскольку ни одна программа с ошибками уже не сможет так легко повредить другие программы или операционную систему. Кроме того, программу, “потерпевшую крах”, можно довольно просто завершить без ущерба для всей системы.

Зная, что для разработки новых операционных систем и приложений, использующих преимущества 32-разрядного защищенного режима, потребуется некоторое время, Intel предусмотрела в процессоре 386 обратно совместимый реальный режим. Благодаря этому процессор 386 мог выполнять немодифицированные 16-разрядные приложения, причем намного быстрее, чем на любом процессоре предыдущего поколения. Для большинства пользователей этого было достаточно; им не требовалось все 32-разрядное программное обеспечение — достаточно было того, что имевшиеся у них 16-разрядные программы работали быстрее. К сожалению, из-за этого процессор никогда не работал в 32-разрядном защищенном режиме и все возможности защищенного режима не использовались.

Когда высокопроизводительный процессор, подобный Pentium 4, работает в DOS (т.е. в реальном режиме), он напоминает “Turbo 8088”. Слово “Turbo” означает, что процессор имеет преимущество в быстродействии при выполнении 16-разрядных программ, хотя он может выполнять только 16-разрядные команды и обращаться к памяти в пределах все того же 1 Мбайт, предусмотренного картой памяти процессора 8088. Поэтому, даже если у вас система с Pentium 4 или Athlon XP и оперативной памятью емкостью 256 Мбайт, при работе в Windows 3.x или DOS в действительности используется только первый мегабайт памяти. В связи с этим потребовались новые операционные системы и приложения, которые могли бы использовать все преимущества современных процессоров в 32-разрядном защищенном режиме. Однако некоторые пользователи поначалу сопротивлялись переходу к 32-разрядной среде. Сообщество пользователей оказалось весьма устойчивым в своих привязанностях и не желало изменять привычек. Признаюсь честно: я был одним из них.

Из-за сопротивления пользователей 32-разрядные операционные системы, такие как Unix и ее разновидности (например, Linux), OS/2 и даже Windows NT/2000/XP, распространялись на рынке ПК довольно вяло. Из перечисленных систем Windows XP стала по настоящему широко распространенным программным продуктом во многом благодаря огромной популярности Windows 95/98/Me (смешанные 16/32-разрядные системы). Последней полностью 16-разрядной операционной системой была Windows серии 3.x, так как на самом деле она работала в качестве надстройки DOS.

Такие 64-разрядные процессоры, как Itanium, AMD Opteron и EM64T-совместимый процессор Xeon, привнесли возможность работы 64-разрядных программ в серверных системах, в то время как процессоры Athlon 64, EM64T-совместимый Pentium 4, а также Pentium D и Core 2 создавались непосредственно для настольных систем. Оба процессора совместимы со всем существующим 32-разрядным программным обеспечением. Но для того, чтобы воспользоваться возможностями процессора в полном объеме, потребуются полноценные 64-разрядные операционные системы и приложения. Microsoft уже выпустила 64-разрядные версии Windows XP и Vista, в то время как различными компаниями создаются 64-разрядные приложения для серверов и рабочих станций.

Примечание

В процессорах Itanium и AMD Athlon 64 реализованы различные 64-разрядные архитектуры. Таким образом, 64-разрядное программное обеспечение, созданное для одной платформы, будет несовместимо с другой и потребует отдельной перекомпиляции со стороны поставщика продукта. Одним словом, специально созданные программы для 64-разрядных процессоров Intel нельзя будет запустить на компьютере с 64-разрядным процессором Athlon и наоборот.

Виртуальный реальный режим IA-32

Для обратной совместимости 32-разрядная система Windows использует третий режим в процессоре — виртуальный реальный режим. По существу, это режим выполнения 16-разрядной среды (реальный режим), реализованный внутри 32-разрядного защищенного режима (т.е. виртуально, а не реально). Выполняя команды в окне командной строки DOS системы Windows, вы создаете виртуальный сеанс реального режима. Поскольку защищенный режим является подлинно многозадачным, фактически можно выполнять несколько сеансов реального режима, причем в каждом сеансе собственное программное обеспечение работает на виртуальном компьютере. И все эти приложения могут выполняться одновременно, даже во время работы других 32-разрядных программ.

Учтите, что любая программа, выполняемая в виртуальном окне реального режима, может обращаться только к памяти объемом до 1 Мбайт, причем для каждой такой программы это будет первый и единственный мегабайт памяти в системе. Другими словами, если вы выполняете приложение DOS в виртуальном реальном окне, ему будет доступна память только объемом до 640 Кбайт. Так происходит потому, что в 16-разрядной среде имеется только 1 Мбайт общей оперативной памяти, при этом верхние 384 Кбайт зарезервированы для системы. Виртуальное реальное окно полностью имитирует среду процессора 8088, и, если не учитывать быстродействие, программное обеспечение будет выполняться точно так, как оно выполнялось первым PC в реальном режиме. Каждая виртуальная машина получает собственный 1 Мбайт адресного пространства и собственный экземпляр реальных аппаратных подпрограмм управления аппаратурой (базовую систему ввода-вывода), причем при этом эмулируются все регистры и возможности реального режима.

Виртуальный реальный режим используется при выполнении 16-разрядных программ в окне DOS. При запуске приложения DOS операционная система Windows создает виртуальную машину DOS, на которой это приложение может выполняться.

Важно отметить, что все Intel-совместимые процессоры (в частности, AMD и Cyrix) при включении питания начинают работать в реальном режиме. При загрузке 32-разрядная операционная система автоматически переключает процессор в 32-разрядный режим и управляет им в этом режиме.

Также важно заметить, что некоторые приложения DOS и Windows 3.x в 32-разрядной среде ведут себя неадекватно, т.е. делают то, что не поддерживается даже в виртуальном реальном режиме.

Диагностическое программное обеспечение — прекрасный тому пример: оно не будет корректно работать в окне реального режима (виртуального реального) под управлением Windows. Чтобы на Pentium 4 запустить такое программное обеспечение в первоначальном упрощенном режиме, необходимо прервать процесс начальной загрузки системы и просто загрузить DOS. Это можно выполнить в Windows 9x (исключая Windows Me), нажимая клавишу <F8>, когда на экране появляется подсказка Starting Windows. Затем, когда появится загрузочное меню, в нем нужно выбрать команду загрузки простой 16-разрядной операционной системы реального режима DOS. Для запуска программ диагностики, которые невозможно запустить обычным образом в защищенном режиме, рекомендуется выбирать режим с поддержкой командной строки. Учитывая, что промежуток времени, в который Windows ожидает нажатия <F8>, очень короткий (порядка 2 с), лучше нажимать <F8> несколько раз подряд. Операционная система Windows Me создавалась, как вы знаете, на основе Windows 98. Пытаясь отучить пользователей от 16-разрядного режима работы, Microsoft удалила опцию загрузочного меню (Startup). Операционные системы Windows NT/2000/XP также лишены возможности прервать загрузку подобным образом. Для запуска компьютера в режиме DOS придется создать загрузочный диск, который и будет затем использоваться для загрузки системы в реальном режиме. Как правило, этот режим требуется для некоторых процедур технического обслуживания, в частности для выполнения аппаратной диагностики и непосредственного редактирования секторов диска.

Хотя реальный режим используется DOS и “стандартными” приложениями DOS, есть специальные программы, которые “расширяют” DOS и открывают доступ к дополнительной памяти XMS (сверх 1 Мбайт). Они иногда называются расширителями DOS и обычно включаются как часть программного обеспечения DOS или Windows 3.x, в котором используются. Протокол, описывающий, как выполнять DOS в защищенном режиме, называется DPMI (DOS Protected Mode Interface — интерфейс защищенного режима DOS).

Этот протокол использовался в Windows 3.x для обращения к дополнительной памяти XMS при работе приложений для Windows 3.x. Он позволял 16-разрядным приложениям использовать память, превышающую 1 Мбайт. Расширители DOS особенно часто применяются в играх DOS; именно благодаря им игровая программа может использовать объем памяти, намного превышающий стандартный (1 Мбайт), который могут адресовать большинство программ, работающих в реальном режиме. Эти расширители DOS переключают процессор в реальный режим и обратно, а в случае запуска под управлением Windows применяют интерфейс DPMI, встроенный в Windows, и тем самым позволяют другим программам совместно использовать часть дополнительной памяти XMS системы.

Есть еще одно исключение: первые 64 Кбайт дополнительной памяти в реальном режиме доступны программам. Это результат ошибки в первом компьютере IBM AT, связанной с 21-й линией адреса памяти (A20, поскольку A0 — первая строка адреса). Управляя сигналом на линии A20, программное обеспечение реального режима может получать доступ к первым 64 Кбайт дополнительной памяти — это первые 64 Кбайт памяти, следующие за первым мегабайтом. Эта область памяти называется областью верхних адресов памяти (high memory area — HMA).

64"разрядный расширенный режим IA"32e (AMD64, x86"64, EM64T)

Этот режим процессора является расширением архитектуры IA-32, разработанным компанией AMD и в дальнейшем поддержанным Intel. Процессоры, поддерживающие 64-разрядные расширения, могут работать в реальном режиме (8086), режиме IA-32 или IA-32e. При использовании режима IA-32 процессор может работать в защищенном или виртуальном реальном режиме. Режим IA-32e позволяет работать в 64-разрядном режиме или в режиме совместимости, что подразумевает возможность одновременного выполнения 64- и 32-разрядных приложений. Режим IA-32e включает в себя два подрежима.

  • 64-разрядный режим. Позволяет 64-разрядной операционной системе выполнять 64-разрядные приложения.
  • Режим совместимости. Позволяет 64-разрядной операционной системе выполнять 32-разрядные приложения.

Первый подрежим активизируется после загрузки 64-разрядной операционной системы и используется 64-разрядными приложениями. В 64-разрядном подрежиме доступно несколько новых функций:

  • 64-разрядная линейная адресация памяти;
  • Поддержка физической памяти объемом более 4 Гбайт (определенные ограничения накладываются процессором);
  • 8 новых регистров общего назначения GPR (General-Purpose Register);
  • 8 новых регистров для поточных расширений SIMD (MMX, SSE, SSE2 и SSE3);
  • 64-разрядные регистры GPR и указатели инструкций.
    Режим совместимости IE-32e позволяет запускать 32- и 16-разрядные приложения под управлением 64-разрядной операционной системы. К сожалению, старые 16-разрядные программы, работающие в виртуальном реальном режиме (например, приложения DOS), не поддерживаются, а значит, их выполнение невозможно. Данное ограничение наверняка будет представлять наибольшую проблему для пользователей. Подобно 64-разрядному режиму, режим совместимости активизируется операционной системой для отдельных приложений, благодаря чему становится возможным одновременное выполнение 64- и 32-разрядных приложений.

Для того чтобы все эти приложения работали, необходима 64-разрядная операционная система и, что гораздо важнее, 64-разрядные драйверы для всех устройств, предназначенные именно для этой операционной системы. В настоящее время существуют три 64-разрядные версии Windows:

  • Windows XP 64-bit Edition for Itanium;
  • Windows XP Professional x64 Edition;
  • Windows Vista 64-bit (несколько вариантов).

Первая из них, предназначенная для процессоров с архитектурой IA-64, таких как Itanium и Itanium 2, была представлена еще в 2001 году. Последние две предназначены для процессоров архитектуры IA-32e, поддерживающих 64-разрядные расширения, в частности Athlon 64, Opteron, некоторые модели Sempron, Core 2, Pentium D, Pentium Extreme Edition, а также некоторые модели Xeon и Pentium 4. Обратите внимание, что Microsoft использует термин x64применительно к процессорам, поддерживающим расширения AMD64 или EM64T, так как расширения стандартной архитектуры IA-32, разработанные AMD и Intel, практически идентичны и поддерживаются одной версией Windows.

Примечание

В первых версиях процессоров с технологией EM64T от компании Intel отсутствовала поддержка инструкций IAHF и SAHF набора команд AMD64. В то же время процессоры Pentium 4 и Xeon полностью поддерживают эти инструкции, однако требуется обновление BIOS. Новые многоядерные процессоры также поддерживают эти инструкции.

Ограничения физической памяти для 32- и 64-разрядной версии редакций систем Windows XP и Vista представлены в таблице ниже .

режимы процессора

Основное различие между 32- и 64-разрядной версиями Windows — поддерживаемый объем памяти, поскольку 32-разрядные версии не поддерживают более 4 Гбайт физической памяти, а также больше 2 Гбайт выделенной памяти на процесс. В то же время 64-разрядные версии Windows поддерживают до 128 Гбайт физической памяти (при выделении до 4 Гбайт на каждый 32-разрядный процесс, или до 8 Гбайт на каждый 64-разрядный процесс). Поддержка больших объемов памяти означает, что приложения могут загружать больше информации в память, а значит, процессор может быстрее обращаться к данным.

Следует отметить, что 64-разрядные версии Windows позволяют запустить без каких либо проблем 32-разрядные Windows-приложения, но не поддерживают приложения DOS и другие программы, работающие в виртуальном реальном режиме. Достаточно серьезная проблема связана и с драйверами: 32-разрядные процессы не могут загружать 64-разрядные динамически подключаемые библиотеки DLL, а 64-разрядные процессы, в свою очередь, не могут загружать 32-разрядные библиотеки DLL. Следовательно, для всех устройств, подключенных к системе, необходимы как 32-, так и 64-разрядные драйверы. Поиск 64-разрядных драйверов для старых устройств крайне сложен. Найти драйверы для устройств, выпуск которых давно прекращен, чаще всего просто невозможно. Даже для новых устройств может пройти пару лет, прежде чем их производители начнут поставлять 64-разрядные версии драйверов. Хочется верить, что в обозримом будущем все производители оборудования начнут выпускать драйверы для 64-разрядных систем. Прежде чем устанавливать 64-разрядную версию Windows, убедитесь в наличии 64-разрядных версий драйверов для всех имеющихся в компьютерной системе внутренних и внешних устройств. Не забывайте, что драйверы для Itanium-совместимых версий операционных систем не подходят для операционных систем с x64-совместимыми процессорами.

Рассматривая возможность перехода от 32- к 64-разрядной технологии, следует принимать во внимание поддерживаемый объем памяти, доступность драйверов и совместимость программного обеспечения. Как уже отмечалось, переход от 16-разрядных вычислений к 32-разрядным продолжался 16 лет. Конечно, переход от 32-разрядных вычислений к 64-разрядным не будет столько длиться, но 2–3 года на это все же уйдет.